

# Kr/Xe Separation and Capture Overview - US/UK collaboration

April 2021

Amy K Welty, Mitchell Greenhalgh, Troy G Garn, Meghan S Fujimoto





### DISCLAIMER

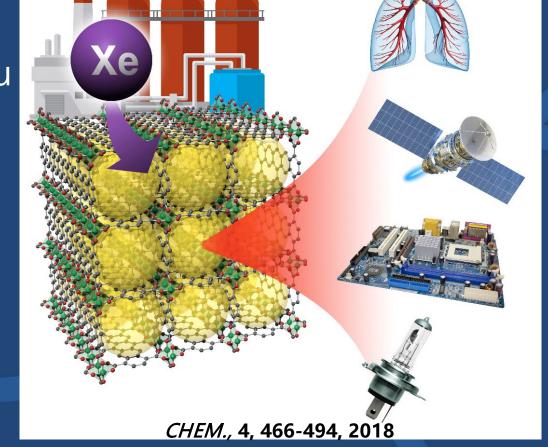
This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

# Kr/Xe Separation and Capture Overview - US/UK collaboration

Amy K Welty, Mitchell Greenhalgh, Troy G Garn, Meghan S Fujimoto

**April 2021** 

Idaho National Laboratory Idaho Falls, Idaho 83415


http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

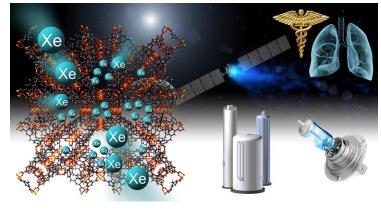
# Kr/Xe Separation and Capture from Used Nuclear Fuel Reprocessing Off Gas

Praveen K. Thallapally, Alex Robinson, Jian Liu (PNNL) Mitchell Greenhalgh, Troy Garn, Meghan Fujimoto, Amy Welty (INL)

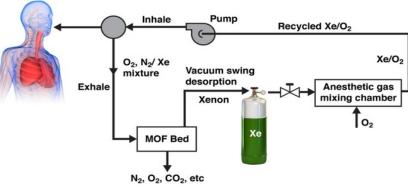
April, 2021



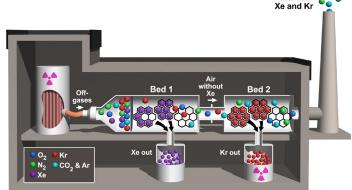



# **Current technology**

### Current Technology


- > Cryogenic removal of Xe and Kr
  - Projected to be expensive
  - Potential for O<sub>3</sub> accumulation ⇒ hazardous conditions
  - 85Kr decay product Rb is a liquid at storage temperatures and corrosive
  - corrosion of storage canisters

### Porous materials

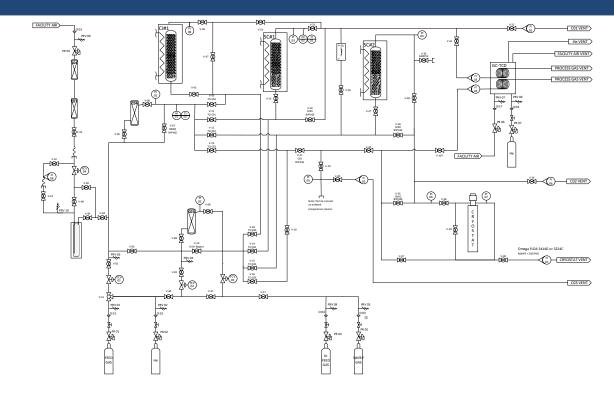

- Remove Xe and Kr in separate step:
- Remove Xe at ambient or low temperatures
   Recover process costs by selling Xe?
- Remove Kr at near room temperature
- MOFs and COFs (PNNL)
- AgZ and HZ (INL)



ACS. Mat. Lett., 2020, 3, 233-238

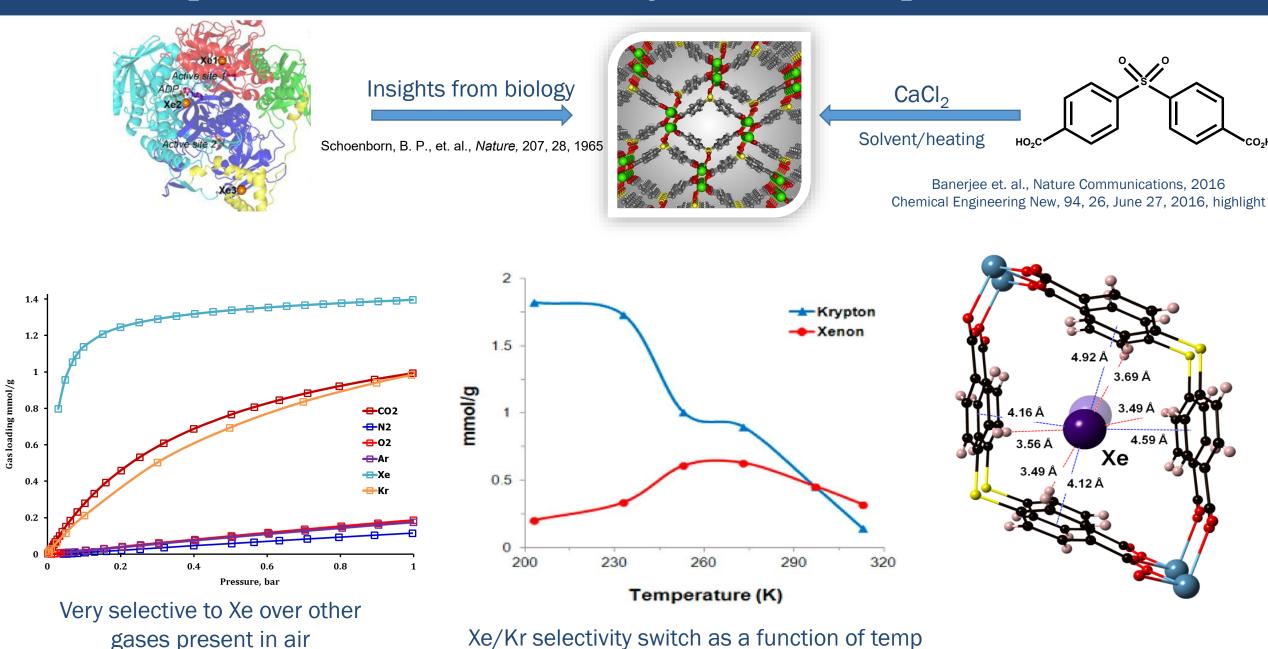


Chem. Eur. J., 23, 10758 - 10762, 2017

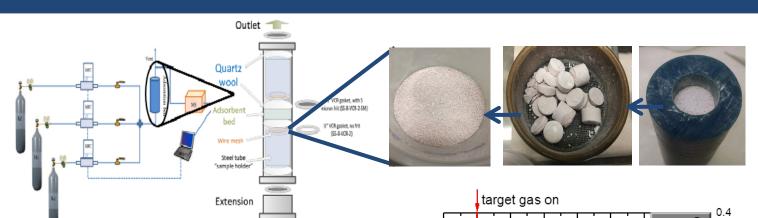



Acc. Chem. Res. 2015, 48, 2, 211-219

# Capabilities@PNNL and INL




- > Computationally inspired material discovery
- Porous material characterization and testing
- ➤ Milligram to kilogram scale synthesis
- Bench scale demonstration in collaboration with industrial partners
- ➤ Full Patent on noble gas separation using MOFs and related materials USPTO WO/2017/218346A1
- Filled a provisional patent on making mechanically robust particles using PNNL proprietary approach
- ➤ Licensed the large-scale synthesis of material technology to Inna Venture, LA



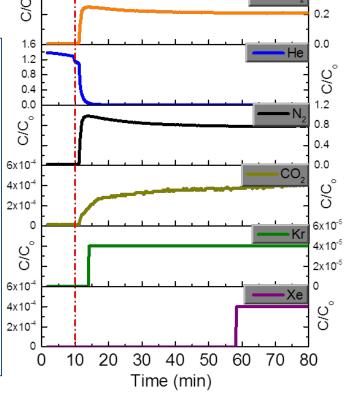

- ☐ Flexible test system designed to emulate real-world conditions
  - Operates at nearly any applicable temperature, pressure, or flow condition
  - ☐ Dual-stream, continuous gas analysis
- Zeolite sorbent production: Patent awarded 2014 (US 8,686,083 B2)
- □ Customer/partner sorbent testing

# Bio-inspired Material Discovery: Room Temperature Sorbent

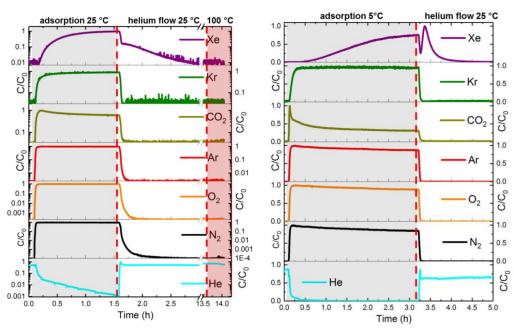


# Single Column Breakthrough Experiments and Desorption



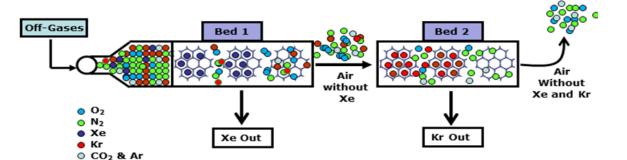

| Property                 | Value                 |
|--------------------------|-----------------------|
| Pressed Pressure         | 75 MPa                |
| Size                     | 500 – 850             |
| BET Surface area         | 15 m²/g               |
| BET Surface area, powder | 120 m <sup>2</sup> /g |

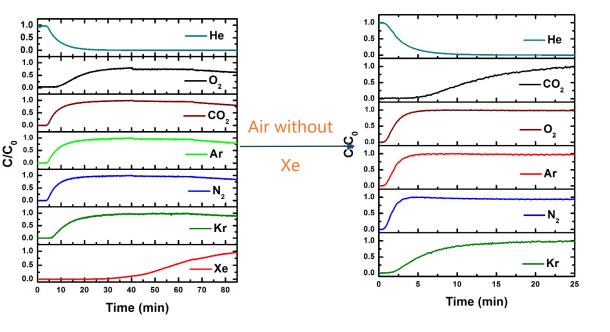
### > Conditions


- Air = 78% N<sub>2</sub>, 21% O<sub>2</sub>, 0.9% Ar, 0.03% CO<sub>2</sub>, 1300 ppm Xe, 130 ppm Kr
- Flow rate = 20 cm<sup>3</sup>/min
- $T = 25 \, ^{\circ}\text{C} (298\text{K})$
- MOF = CaSDB

### > Results

- Xe capacity = ~30 mmol/kg vs 8 mmol/kg (NiMOF) and 22 mmol/kg (CC3)
- >95% of the Xe captured from air
- Xe/Kr (selectivity) = 15





### Desorption experiments

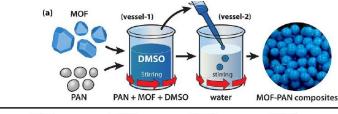


Wet gas (RH 48%)

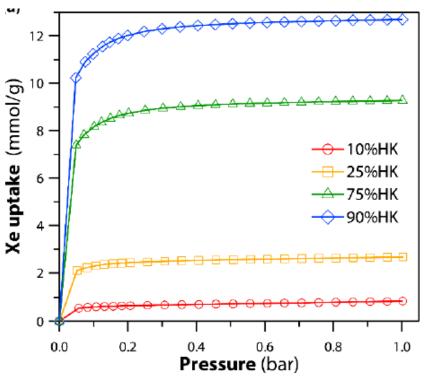
# Two Column Breakthrough Experiments






- A two-bed technique to remove and separate
  - Bed 1 remove Xe from air
  - Bed 2 remove Kr
    - Yields air without Xe and Kr
    - Off-gas can be released


| Gas           | Breakthrough Time (min) | Capacity (mmol/kg)     | Selectivity of Xe |
|---------------|-------------------------|------------------------|-------------------|
| Xe            | 18                      | 16 (33.8) <sup>a</sup> |                   |
| Kr            | 1                       | $0.11(0.75)^{a}$       | 14                |
| $CO_2$        | 5                       | 1.2                    | 3                 |
| $N_2$         | 0.08                    | 47                     | 209               |
| Ar            | 0.08                    | 5.28                   | 210               |
| $O_2$         | 0.08                    | 12                     | 206               |
| 10 14 4 111 1 |                         |                        |                   |


<sup>&</sup>lt;sup>a</sup> Capacity at equilibrium

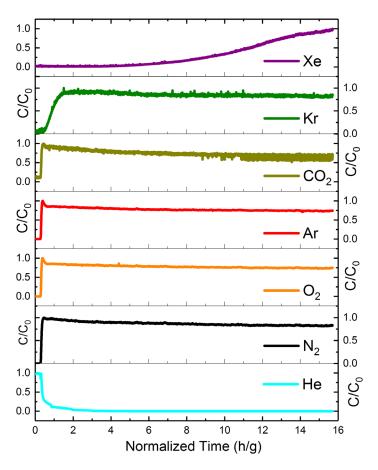
| Gas             | Breakthrough Time (min) | Capacity (mmol/kg) | Selectivity of Kr |
|-----------------|-------------------------|--------------------|-------------------|
| Kr              | 2.5                     | 0.13               |                   |
| CO <sub>2</sub> | 7.5                     | 0.90               | 0.3               |
| $N_2$           | 0.25                    | 80.8               | 9.9               |
| Ar              | 0.25                    | 9.09               | 9.3               |
| O <sub>2</sub>  | 0.25                    | 21.2               | 9.3               |

# Low Temperature MOF Sorbent for Xenon








### **Conditions**

- Air = 78% N<sub>2</sub>, 21% O<sub>2</sub>, 0.9% Ar, 0.03% CO<sub>2</sub>, 1300 ppm Xe, 130 ppm Kr
- Flow rate = 20 cm<sup>3</sup>/min
- T = -78 °C
- MOF = CuBTC

### > Results

- Xe capacity = ~900 mmol/kg;
- >99% of the Xe captured from air;
- 12 times higher capacity than CaSDB MOF

### Low temperature (-78 C)

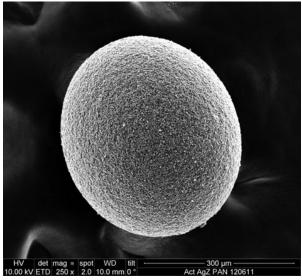


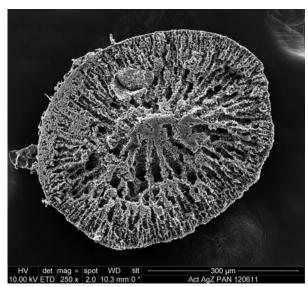
# Major Accomplishments

- Developed novel engineered form sorbents
  - AgZ-PAN and HZ-PAN
  - Patent awarded for the process
- Designed custom adsorption system
- Evaluated solid phase adsorption of Xe/Kr
- Published two journal articles
  - Journal of Nuclear Science and Technology, 51:4, 476-481, DOI: 10.1080/00223131.2014.877404
  - Journal of Nuclear Science and Technology, DOI:10.1080/00223131.2015.1126205
- Investigated sorbent cycling effects
- Demonstrated separation of Xe from Kr in a dual column system
- Produced a pure Kr stream from a Kr/Xe/Air mixture
- Evaluated desorption of Kr and Xe
- Performed other adsorption testing for external customers

# Engineered from sorbent development

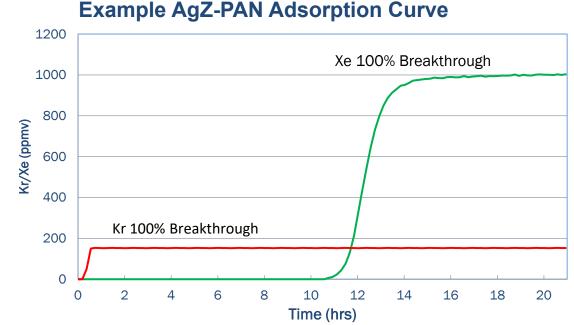
# Mordenite powders incorporated into a macroporous polymer (PAN)


- H and Na powders ~80 wt. %
- Spherical beads 0.3-1.4 mm diameter
- Bulk density 0.3-0.4 g/mL
- Na form converted to silver form
- Patent awarded 2014 (US 8,686,083 B2)


### HZ-PAN Sorbent

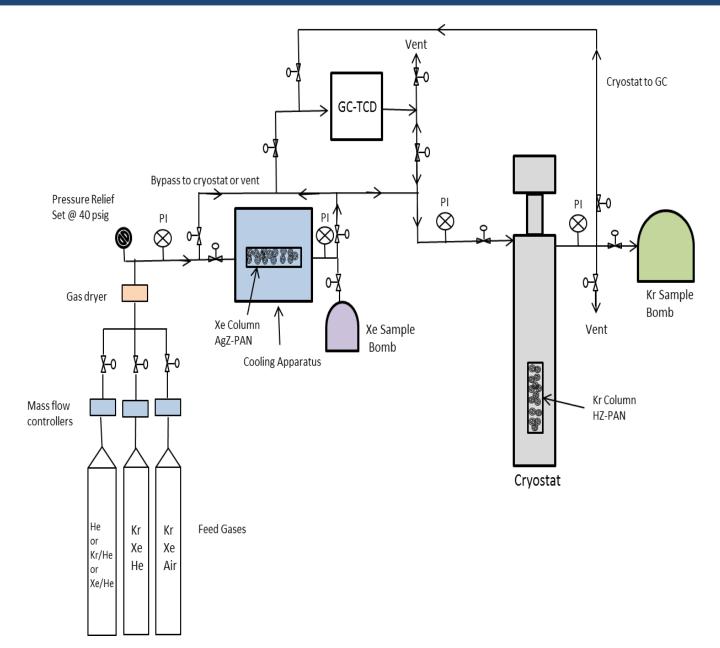
- BET surface area = 336 m<sup>2</sup>/g
- Micropore area  $(0.4-1.0 \text{ nm}) = 250 \text{ m}^2/\text{g}$

# AgZ-PAN Sorbent


- BET surface area = 250 m<sup>2</sup>/g
- Micropore area  $(0.4-1.0 \text{ nm}) = 190 \text{ m}^2/\text{g}$






# **INL Adsorption Testing**

- AgZ-PAN
  - Highly selective for Xe over Kr
  - Temperatures 295 to 220 K
- HZ-PAN
  - High capacity for Kr in air
  - 191 K temperature
- Removal of Xe from Kr
  - Reduction in captured Kr volume
- Demonstrate feasibility of Xe removal with solid phase sorbents
- Produce pure Kr waste stream
- Determine adsorbed phase composition of both columns



# FY-15 Dual Column Tests

- Test Conditions
  - 1000 ppmv Xe, 150 ppmv Kr
  - Flow rate 50 sccm
  - 18.3 grams AgZ-PAN
  - 4.45 grams HZ-PAN
  - Superficial velocity
    - Xe column 23.0 cm/min
    - Kr column 18.7 cm/min
  - Column temperatures
    - Xe column 295 or 253 K
    - Kr column 191 K
  - Test times (stop
    - 55 minutes (295 K)
    - 105 minutes (253 K)



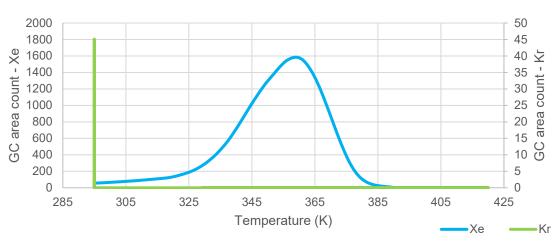
# AgZ-PAN and HZ-PAN cycle testing

## Cycling tests

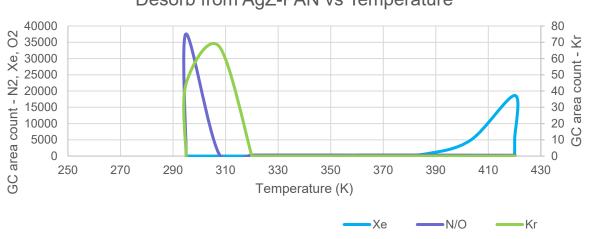
- Evaluate sorbent efficacy over numerous thermal cycles
- Flow gas through columns at proposed adsorption/desorption temperatures
- Air and He evaluated as desorption gases
- Measure sorbent capacity intermittently to ensure sorbent doesn't lose performance

### AgZ-PAN

- Temperature range of 293 to 420 K
- Results, 100 cycles without decrease in capacity measurements
- An increase in capacity over time has been observed


### HZ-PAN

- Temperature range 191 to 420 K
- 24 cycles and counting, no decrease in capacity observed to date


# FY-18 Desorption Studies

- AgZ-PAN
  - Xe/Kr separation
  - Ambient temperature adsorption
  - Adsorbed phase contains Xe, Kr and air
  - Desorption requires purge gas (He)
  - Ramp temperature slowly over 12 hours
  - Step temperature and soak 6 hours
  - 99-100% Xe separation

### Desorb from AgZ-PAN vs Temperature



### Desorb from AgZ-PAN vs Temperature



# Outside Interest from Research

### **PNNL**

### GAIN voucher with Flibe Energy

Noble gas management using MOFs with Liquid Fluoride Thorium Reactor

### **Praxair**

Interested in MOF technology to separate Xe from oxygen rich stream at room temperature /Kr separation

Involved in discussions with several companies including

### **DTRA Fundamental science**

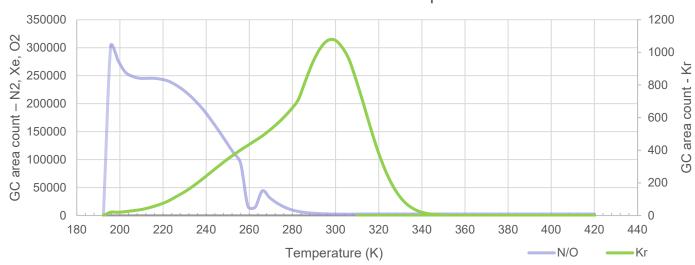
Awarded a grant to understand the role of surface chemistry and pore size on noble gas adsorption

### DOE NP Isotope program

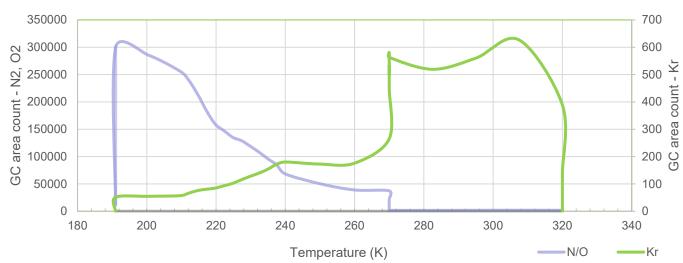
Involved in discussion with various labs who are working on isotope program to selectively trap noble gases

### INL

- GAIN voucher with GE-Hitachi
  - Enabling System Technologies to Improve the Economics and Performance of Existing LWRs and Advanced BWR Plants: Improving Off-gas System Performance
  - Recommendation made to improve monitoring and performance of off-gas system.
- Phase II SBIR with TDA Research Inc. from NASA
  - Testing of sorbents for Nuclear Thermal Propulsion (ground testing)
  - Testing Complete
- Licensed patent with Global Phosphate Solutions
  - "Phosphate Sponge"
  - Received R&D100 Special Recognition Green Tech Award


# Current/Future Research

- Continued MOF development with thin-bed testing
- Continued deep-bed testing of promising sorbents
- Focus on applied testing and optimization
- Advanced reactor off-gas treatment sorbents
- Alternate reprocessing (e.g. pyroprocessing) off-gas treatment sorbents


# **Backup Slides**

# FY-18 Desorption Studies





### Desorb from HZ-PAN vs Temperature



### HZ-PAN

- Kr capture
- 191 K adsorption
- Adsorbed phase contains
  Kr and air
- Desorption requires purge gas (He)
- Ramp temperature slowly over 12 hours
- Step temperature and soak 9 hours
- ~80% Kr separation
- 3.5 to 5 times Kr concentration

# FY-19 and 20 Desorption

# Desorption of HZ-PAN and AgZ-PAN

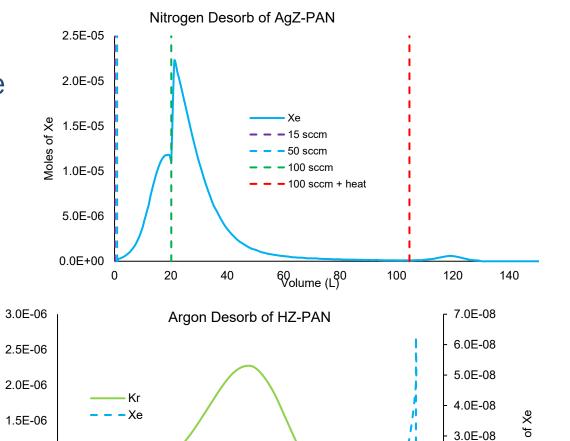
- AgZ-PAN Xe Desorb
- Investigated flow rate and temperature
- Viability of alternative sweep gas
  - Air
  - Argon
  - Nitrogen
- HZ-PAN Kr Desorb
  - Low flow Argon
  - Removal at near ambient temps

Moles of Kr

1.0E-06

5.0E-07

0.0E+00


190

210

230

250

Temperature (K)



270

290

310

2.0E-08

1.0E-08

0.0E+00

330