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Abstract—We consider the power allocation problem over
shared spectrum for millimeter-Wave (mmWave) cellular down-
link. Existing approaches usually find sub-optimal solutions by
solving a non-convex optimization which leads to scalability issues
due to centralized control. Therefore, distributed and adaptive
approaches are desirable. Recently, model-free Deep Reinforce-
ment Learning (DRL) has achieved success in such wireless
resource management tasks. By modeling the radio environment
as a Markov Decision Process (MDP) with the base stations
(BSs) being the agents, power allocation can be automated
at the agent level with comparable throughput performance
to conventional centralized schemes. The multi-agent setting
presents new challenges as the radio environment is impacted by
the joint actions of the agents and is no longer stationary from
any individual agent’s perspective. Existing literature bypasses
this non-stationarity violation by ignoring it which may cause
performance degradation. To tackle this issue, we propose a
distributed continuous power allocation scheme based on a mod-
ified version of multi-agent Deep Deterministic Policy Gradient
(MADDPG) that is tailored for the distributed multiple-agent
setting. The proposed scheme employs a centralized-training-
distributed-execution framework where Q-functions are trained
over subsets of BSs while each BS determines its transmit power
based only on its own local observation. It admits constant per-BS
communication and computation complexity and is thus scalable
to large networks. Numerical evaluation shows that the proposed
scheme adapts well to a wide range of interference conditions
and can achieve comparable or better performance than several
state-of-the-art non-learning approaches.

I. INTRODUCTION

Millimeter-Wave (mmWave) communication is one of the
key enabling technologies for the fifth-generation (5G) cellular
systems. The proliferation of mmWave frequency bands has
increased the link capacity by several orders of magnitude
compared to sub-6 GHz wireless systems and is able to support
massive connections [1]. To combat propagation loss, direc-
tional beamforming is commonly used [2]. It was shown [3]
that even at mmWave frequencies, spectrum availability is
still limited considering the abundance of mobile and data-
intensive services. Therefore, spectrum sharing is necessary for
better utilization of unlicensed and shared spectrum. However,
the concurrency of highly directional transmissions presents
new challenges to spectrum sharing. Without proper coordina-
tion, beams could overlap and cause severe interference which

hinders the performance. The situation is further exacerbated
by the use of small cells with densely populated user equip-
ment (UE).

Recently, deep reinforcement learning (DRL) has achieved
notable success in wireless resource management [4]–[17].
Nasir and Guo [4] proposed a deep Q-network (DQN)-
based (discrete) power allocation scheme which achieves
competitive throughput performance to conventional central-
ized approaches like weighted minimum mean square error
(WMMSE) [18] and fractional programming (FP) [19]. Treat-
ing as RL agents, the transmitters improve their decision
making by actively interacting with the radio environment and
benefit from learning with accumulated experiences. This work
was further extended to continuous power control [5] and joint
spectrum and power allocation [6]. Some other types of DRL
algorithms were applied to the same tasks [7], [9]–[11]. For
mmWave networks, Feng et al. [12] proposed a DQN-based
resource management scheme to learn and predict blockage
patterns in a backhaul capacity-limited system. A DQN-based
joint spectrum and (discrete) power allocation scheme was
proposed in [13]. Elsayed et al. [14] studied the clustering
problem for mmWave networks with user mobility and pro-
posed a DQN-based clustering scheme. Moreover, Sana et
al. [15] proposed a deep recurrent Q-network (DRQN)-based
handover scheme for dynamic mmWave user association.
One common issue with these works is that, the stationarity
assumption of MDP is violated in the multi-agent setting as the
environment seen by each agent is impacted by the unknown
behaviors of other agents. This violation is usually ignored in
the existing literature.

In this paper, we design power allocation schemes
for mmWave cellular downlink by leveraging the multi-
agent Deep Deterministic Policy Gradient (MADDPG) al-
gorithm [20]. Each base station (BS) is modeled as an
agent that determines its transmit power autonomously in
real time. MADDPG addresses the multi-agent environment
non-stationarity issue by conditioning the Q-function of indi-
vidual agents also on other agents’ actions which are made
available by using a centralized-training-distributed-execution
framework. However, conditioning the Q-functions over the



actions of a large number of agents necessitates high inter-
BS communication overhead and may incur instability in
agent training. To make it scalable, we propose a distributed
version of MADDPG where the Q-function (critic) of each
agent is trained over a subset of BSs (i.e., each BS and
its neighbors) with a system-level reward. This formulation
suppresses the unnecessary information exchange among BSs
which barely impact each other’s local environment dynamics.
It also increases the stability and training efficiency of the deep
neural network (DNN)-based actor/critic training by restricting
the input of the DNNs to a relatively small size. We then
propose a distributed power allocation scheme based on the
proposed distributed MADDPG algorithm. Simulations shows
that the proposed scheme can achieve comparable or better
performance than WMMSE [18] and FP [19].

Several works [4], [5], [7], [13] are most related to ours. We
explain the difference as follows. First, our scheme deals with
continuous power control while the DQN-based schemes [4],
[7], [13] can only handle discrete powers and the effect of
quantization has not been properly investigated. Second, we
address agent heterogeneity by equipping each BS with a
unique actor/critic that accommodates its specific local radio
environment. In contrast, in [4], [5], a single global actor is
trained using experiences gathered from all BSs which is then
copied to each BS for use. For heterogeneous systems like
mmWave networks where each BS can face very different
beam coverage and interference conditions, a single actor/critic
may not be able to fit all agents. Third, the proposed distributed
MADDPG only requires information exchange among subsets
of BSs. This largely reduces the communication overhead
compared to [4], [5] where network-level experience collection
is required.

II. PROBLEM DESCRIPTION

Consider a mmWave cellular network with K base stations
(BSs) {1, · · · ,K}, each of which is associated with a number
of user equipment (UE). The BSs are equipped with multiple
antennas to enable beam-based directional transmissions while
the UEs are equipped with a single antenna. The network
is a fully synchronized and slotted system operating on a
shared spectrum of W Hz. We adopt a block fading model
for the downlink channels. In particular, the small-scale fading
keeps unchanged during each slot and follows a temporally
correlated Nakagami distribution [21] with probability density

f(x|m,Ω) =
2mm

Γ(m)Ωm
x2m−1 exp

(
−m

Ω
x2

)
,∀x ≥ 0 (1)

with parameters Ω = E[X2],m = Ω2/Var(X2) and Γ denotes
the Gamma function. The fading coefficients {h(t),∀t} are
generated in a way such that 1) h(t),∀t follows a Nakagami
distribution with the same parameters m,Ω, and 2) the squared
channels between any two consecutive time slots have a
correlation coefficient of ρ = Cov(|h(t)|2,|h(t+1)|2)

(Var(|h(t)|2)Var(|h(t+1)|2))1/2 ,∀t.
Let h

(t)
uji

denote the fading coefficient from BS i to UE uj

which is the scheduled UE of BS j. As we do not consider

UE scheduling in this work, we write h
(t)
uji

as h
(t)
ji for brevity.

The equivalent channel gain g
(t)
ji can then be written as

g
(t)
ji = PL(dji)Gji|h(t)

ji |2 in which PL(dji) denotes the path
loss and dji is the distance between BS i and UE uj . Gji

denotes the antenna gain of BS i towards UE uj . We use the
dual-slope path loss model that is widely adopted for mmWave
channel modeling [22]–[24]. In particular, the path loss at
distance d is equal to

PL(d) =
{

1/dα0 , d ≤ dC
dα1−α0

C /dα1 , d > dC
(2)

where dC is the critical distance, and α0, α1(α1 ≥ α0 > 0) are
the near- and far-field path loss exponents. Moreover, the BSs
use a keyhole-like sectorized antenna model [25] which has
a constant mainlobe radiation gain of Gmax and a constant
sidelobe gain Gmin. In particular, let ∆ be the beamwidth,
then the antenna gain in the direction of θ is equal to Gmax

if |θ| ≤ ∆ and Gmin otherwise. The main-to-sidelobe ratio
(MSR) is defined as MSR ∆

= 10 lg(Gmax/Gmin) dB.

Let p(t) ∆
=

[
p
(t)
1 , · · · , p(t)K

]
denote the power allocation

profile of all BSs at time t, then the received signal-to-
interference-plus-noise ratio (SINR) at the scheduled UE of
BS i is equal to

SINR(t)
i =

g
(t)
ii p

(t)
i∑

j ̸=i g
(t)
ij p

(t)
j + σ2

(3)

where σ2 = n0W is the total noise with n0 denoting the noise
power spectrum density. The normalized throughput (bps/Hz)
of BS i can be written as C(t)

i = log2
(
1+SINR(t)

i

)
. The goal

is to maximize the total throughput

C(t)
sum =

∑
i

C
(t)
i , ∀t (4)

subject to instantaneous power constraints p
(t)
i ≤ pmax

i ,∀i.
In particular, a power allocation p(t) has to be computed at
the beginning of each slot such that C(t)

sum can be maximized.
Although this problem has been extensively studied, finding
the optimal solution is still challenging due to its non-convex
nature. For mmWave networks, power control becomes more
complicated as the beam-based transmissions has to be prop-
erly coordinated to reduce interference. Unlike conventional
approaches using centralized control, we aim to leverage data-
driven learning approaches to design distributed and scalable
power allocation schemes in which BSs choose powers based
on their local measurements and limited information exchange
with other BSs.

III. PROPOSED APPROACH

We present the proposed multi-agent DRL-based power
allocation in this section. We first derive a distributed version
of MADDPG based on which a power allocation scheme
is then developed. An overview of DRL is provided before
proceeding to the description of the main approach.



A. DRL Overview

In RL, an agent aims to optimize an expected return
through repeated interactions with the environment over time.
In each interaction, the agent receives a reward signal from the
environment as an indicator of the quality of the action taken.
The agent learns in a trial-and-error manner by gradually
refining its decision making using the received reward signals.
More specifically, in a discrete-time Markov Decision Process
(MDP) (S,A, R, T ), given some state st ∈ S at time t,
the agent takes an action at ∈ A with probability µ(at|st)
according to a policy µ satisfying

∫
a
µ(a|st)da = 1. Impacted

by at, the environment transitions (governed by the transition
function T ) to a new state st+1 and the agent receives a
scalar reward rt = R(st, at, st+1), which indicates how
good the taken action at is. The set of transition quadruples
{(st, at, rt, st+1),∀t} is referred to as an experience. The
return Gt is defined as the cumulative future rewards, i.e.,
Gt

∆
=

∑∞
τ=0 γ

τrt+τ with γ ∈ (0, 1] being the discount factor
that adjusts the relative importance of the near and far future
rewards. The state-action value function (or Q-function) Qµ

under a specific policy µ is defined as the expected return
starting from any state-action pair (s, a) ∈ S ×A, i.e.,

Qµ(s, a)
∆
= E [Gt|st = s, at = a] , (5)

where the expectation is taken over both the policy µ and the
transition dynamics T . Model-free RL optimizes the agent’s
expected return without knowing or explicitly learning the
transition dynamics and has seen significant developments in
recent years due to the use of neural function approximators.

Deep Deterministic Policy Gradient (DDPG) [26] is a DRL
algorithm which focuses on deterministic policies that map
each state s to a specific action a = µ(s). It uses an actor-
critic architecture in which two separate DNNs θµ and θQ

are used to represent the policy µ(s|θµ) (called actor) and
the Q-function Q(s, a|θQ) (called critic) respectively. Lowe
et al. [20] extended DDPG to the multi-agent domain and
proposed the multi-agent DDPG (MADDPG) algorithm. It
addresses the non-stationarity issue due to multi-agent partic-
ipation by conditioning the Q-function of each agent also on
the actions of other agents (referred to as a centralized critic),
i.e., agent i is defined with a Q-function Qi(s, a1, · · · , aN )
that has all agents’ actions as input. The intuition behind
this modification is that, given a set of fixed actions of
all other agents, the environment perceived by each agent
becomes stationary regardless of what policies are used by
other agents [27].

Under the multi-agent setting, each agent i gets a local
observation oi instead of the true global state. Actions are
chosen based on each agent’s local observation, i.e., ai =
µi(oi|θµi ). The training of the centralized critic Qi(s,a|θQi )
requires the knowledge of the global state s

∆
= (oi)

K
i=1 and

the joint actions a
∆
= (ai)

K
i=1. This is enabled by using a

centralized-training-distributed-execution framework in which
the actor/critics are trained periodically with network-level
experiences while the actions are determined based solely

on each agent’s local observation. In particular, a fixed-size
experience replay buffer D is used to store the past experiences
collected from all agents in a first-in-first-out (FIFO) manner.
Mini-batches of experiences are then sampled from D to train
the actors and critics using SGD. More specifically, given a
mini-batch B = {(sj ,aj , rj , s′j)}j with rj = (rji )

K
i=1 being

the rewards of all agents, the critic of agent i is trained by
minimizing the loss

L(θQi ) =
1

|B|
∑

j∈{1,··· ,|B|}

(
yji −Qi

(
sj , (ajk)

K
k=1|θ

Q
i

))2

. (6)

The regression target (over the jth sample in B) yji =

rji+Q′
i(s

′j , (a′k)
K
k=1|θ

Q′

i )
∣∣
a′
k=µ′

k(o
′j
k |θµ′

k ),∀k is generated by two

target networks Q′
i(·|θ

Q′

i ) and µ′
i(·|θ

µ′

i ) in order to stabilize the
training process. The actor of agent i is trained by minimizing

L(θµi ) = −
1

|B|
∑

j∈{1,··· ,|B|}

Qi

(
sj , (ajk)k ̸=i, ai|θQi

)∣∣
ai=µi(o

j
i |θ

µ
i )
.

(7)
Finally, the weights of the target networks are updated accord-
ing to θQ

′

i ← τθQ + (1− τ)θQ
′

i , θµ
′

i ← τθµ + (1− τ)θµ
′

i ,∀i
for some small number τ ∈ (0, 1). In MADDPG, exploration
is achieved by adding a random noise Nt to the actor output,
i.e., a(t)i = µi(o

(t)
i |θ

µ
i ) +Nt.

B. Proposed Power Allocation Scheme

We adopt a distributed version of MADDPG as the frame-
work for the proposed power allocation scheme. In particular,
each BS is treated as a DRL agent equipped with an actor net-
work for determining transmit powers and a critic network for
evaluating the Q-functions. It is assumed that BSs do not know
each other’s transmit powers, but they can obtain interference
measurements through feedback from the scheduled UEs as
well as some additional measurements through information
exchange with neighboring BSs.

One major drawback of the original MADDPG [20] algo-
rithm is that the Q-function Qi(s,a) of each agent takes the
global state s = (oi)

K
i=1 and the joint action a = (ai)

K
i=1 as

input. This can be problematic for systems with a large number
of agents as the input dimension of the critic network can be
huge which may result in slow convergence and instability in
DNN training. To address this issue, we modify MADDPG
to allow decentralized critic training which means the critics
of agents are trained over subsets of BSs (see Fig. 1). In
particular, we restrict the training of each agent i to within
its neighbor set Ni ⊆ {1, · · · ,K}, which is defined as a set
of agents whose actions have significant impact on agent i’s
local environment. Agent i instead learns a localized critic

Qi

(
(oj)j∈N̂i

, (aj)j∈N̂i
|θQi

)
, (8)

where N̂i
∆
= Ni ∪ {i}. Qi and µi are then trained similarly

according to (6) and (7). (8) means that each agent only
needs to gather information from its neighbors and network-
level information exchange (which introduces delays) can be



𝑄!

1

𝑎!𝑜! 𝑎"𝑜" 𝑎#𝑜#

Critic 𝑄! Critic 𝑄" Critic 𝑄#

…

…

Neighbors 
of agent K

Neighbors 
of agent 1 Neighbors 

of agent 2

Actor 𝜇! Actor 𝜇" Actor 𝜇#

Agent 1 Agent 2 Agent K

…
Distributed policy execution

Centralized training

𝑟 = 𝐶$%&

Fig. 1: Proposed distributed MADDPG framework. Each agent’s
critic is trained on its neighbor set.

reduced.
The definition of localized critic (8) is motivated by the

following observation. In mmWave networks, BSs that are
far apart from each other or with properly placed beams
will contribute little interference to each other and have
negligible impact on the local environment transition dynamics
of each other. This is because mmWave frequency itself suffers
from rapid attenuation due to propagation characteristics, and
highly directional beams suppress interference to undesired
directions. Therefore, it is unnecessary to use a centralized
critic that needs to be trained over the entire set of BSs.
More generally, our formulation provides a flexible trade-off
between inter-BS information exchange and how accurately
the overall radio environment can be perceived by each agent.
Two special cases can be considered. When no information
exchange is allowed among agents, i.e., Ni = ∅,∀i, (8)
becomes Qi(oi, ai|θQi ), which is the case of independent
learning [28]. In contrast, if information exchange is allowed
among arbitrary agents, i.e., Ni = {1, · · · ,K}\{i},∀i, then
(8) becomes Qi

(
(oj)

K
j=1, (aj)

K
j=1|θ

Q
i

)
, which is equivalent to

the original MADDPG critic. We describe how to design the
neighbor set in Section IV-A. In addition, a separate replay
buffer Di can be defined for each agent i which stores the
experiences in the form of(

(oj)j∈N̂i
, (aj)j∈N̂i

, (rj)j∈N̂i
, (o′j)j∈N̂i

)
, ∀i (9)

We next describe the design of actions, local observations
and rewards in the proposed scheme.

Action. Each BS needs to determine the transmit power
p
(t)
i ∈ [0, pmax

i ] to its scheduled UE at the beginning of each
slot. Since the Tanh activation is used for the output layer
of the actor networks, the actor output a

(t)
i = µi(o

(t)
i |θ

µ
i )

falls into [−1, 1]. To achieve exploration, a random noise Nt

is added to a
(t)
i , which is then clipped to within the range

[−w,w] for some w ∈ (0, 1)1. Therefore, the actor output is

1Since hyperbolic tangent function requires an infinitely large input to
achieve the the output values ±1, clipping to [−w,w] where w < 1 increases
numerical stability of DNN training.

mapped to the powers according to p
(t)
i =

a
(t)
i +w

2w pmax
i .

Local Observation. The local observation represents each
agent’s (partial) perception of the radio environment. It should
capture the environment features that are relevant to the
agent’s decision making. To control complexity and make the
proposed scheme scalable, we limit the information exchange
to neighboring BSs. In particular, the observation o

(t)
i of agent

i is defined as

o
(t)
i

∆
=

{
p
(t−1)
i , g

(t−1)
ii , g

(t)
ii , I

(t−1)
i , Î

(t)
i , C

(t−1)
i , C

(t−1)
i∑

j∈N̂i
C

(t−1)
j

,

g
(t−1)
ij p

(t−1)
j , g

(t)
ij p

(t−1)
j , C

(t−1)
j ,∀j ∈ Ni

}
. (10)

which includes several interference and channel measurements
at BS i and throughput obtained from neighboring BSs. In
particular, p(t−1)

i is the power of BS i in the previous slot,
g
(t−1)
ii = PL(dii)Gii|h(t−1)

ii |2 is the direct channel between BS
i and its scheduled UE in slot t−12, g(t)ii = PL(dii)Gii|h(t)

ii |2
is the direct channel in slot t. It is assumed that the channel
changes from h

(t−1)
ii to h

(t)
ii at the very beginning of slot t

right before the new powers p
(t)
i ,∀i are determined, g(t)ii can

also be used by BS i. I(t−1)
i =

∑
j ̸=i g

(t−1)
ij p

(t−1)
j +σ2 is the

total interference (plus noise) measured at BS i in slot t− 1,
Î
(t)
i =

∑
j ̸=i g

(t)
ij p

(t−1)
j +σ2 is the total interference measured

at the beginning of slot t where the channels have changed but
the powers have not been updated. C(t−1)

i is the throughput of
BS i at slot t − 1, and C

(t−1)
i /

∑
j∈N̂i

C
(t−1)
j represents the

relative importance of BS i in terms of throughput contribution
among its neighbors. Moreover, g

(t−1)
ij p

(t−1)
j and g

(t)
ij p

(t−1)
j

are the measured interference from BS j ∈ Ni in slot t−1 and
the beginning of slot t respectively. Finally, C(t−1)

j represents
the throughput achieved by BS j in the previous slot. Note
that C(t−1)

j has to be delivered to BS i (from BS j) despite
all other interference measurements can be directly obtained
at BS i. We include one previous slot in order for the agents
to better keep track of the time-varying channels.

Reward. Unlike [4], [5] which rely on a heuristic reward
design, we use a centralized reward, i.e., r(t)i =

∑K
j=1 C

(t)
j ,∀i

which is intuitive and computationally efficient.
With the above definitions, we summarize the proposed

power allocation scheme as follows. At the beginning of slot
t, each BS i conducts the interference measurements and
exchanges throughput of the previous slot with its neighbors in
order to construct its local observation o

(t)
i . BS i then chooses

a
(t)
i = µi(o

(t)
i |θ

µ
i ) + Nt which is then mapped to the actual

power p
(t)
i =

a
(t)
i +ω

2ω pmax. The chosen power is used for
one slot until the next slot begins and the new observation
o
(t+1)
i can be obtained. The experience of each agent i(
(oj)j∈N̂i

, (aj)j∈N̂i
, (rj)j∈N̂i

, (o′j)j∈N̂i

)
is then pushed to the

corresponding replay buffer Di. For every Ttrain slots, the
actors and critics are trained using mini-batch SGD according
to (6) and (7).

Complexity. The input sizes of the actor and critic networks

2The direct channels can be estimated via pilot training.
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(a) Config. 1: overlapped beams.
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(b) Config. 2: wide (weak) beams.
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Fig. 2: Network with various beam configurations. Gray solid lines indicate BS-UE association.

are |o(t)i | = 3N + 7 and (N + 1)|o(t)i | = (N + 1)(3N + 7)
respectively (See (8)) where N = |Ni| is the neighbor size. It
can be seen that these input sizes do not scale with K if N
is fixed. For our implementation in Section IV with N = 6,
each actor/critic network contains ∼30k/55k parameters. Due
to the local observation design of (10), each BS needs to send
its throughput in the previous slot to its neighbors. This incurs
a communication overhead O(N) per BS.

IV. NUMERICAL EVALUATION

A. Simulation Setup

Consider a network with 4 BSs under various beam and UE
configurations as shown in Fig. 2. Each BS is associated with
three UEs where UE (j, i) denotes the jth UE of BS i. Antenna
beams are aligned with the scheduled UEs. The purpose of
this simulation is to verify the performance of the proposed
scheme under controlled interference situations which will
be elaborated in Section IV-B. The proposed scheme is then
evaluated on a more general network topology (Fig. 3) to
demonstrate its scalability.
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Fig. 3: Network with 8 BSs.

The parameters used in the simulation are summarized in
Table I. The total noise power is calculated according to
σ2 (dBm) = 10 lg(κBT0 × 103) + NR (dB) + 10 lgW with
κB , NR and T0 being Boltzmann’s constant, receiver noise
figure and temperature respectively. Taking the typical values
of NR = 1.5 dB, T0 = 290 K, we have σ2 = −86.46
dBm. The proposed scheme is implemented with PyTorch.
Each actor/critic is represented by a fully-connected DNN
with 5 layers including 3 hidden layers each containing

TABLE I: Simulation parameters.

Parameters Value
pmax
i ,∀i 39 dBm

Bandwidth W 400 MHz
Path loss α0 = 2, α1 = 4, dc = 26 m
Fading m = 50,Ω = 1, ρ = 0.5

DNN optimizer Adam
Learning rates 10−4 (actor), 10−3 (critic)

Replay buffer size 5× 105

Batch size 128
γ, τ 0.9, 5× 10−3

200, 100 and 50 neurons respectively. Each actor network has
one output port with Tanh activation clipped to the range
[−0.95,+0.95]. Each critic network also has one output port
activated with ReLU. We restrict the neighbor set of each
BS to be |Ni| ≤ 6,∀i as in a hexagon cell grid, each BS
can have at most six other neighboring BSs. If the number
of neighbors for a BS is less than six, 6 − |Ni| dummy
agents are created to serve as virtual neighbors (with zero
transmit power) to ensure a fixed input size of the DNNs.
To ensure adequate exploration, the action noise {Nt,∀t} is
chosen as i.d.d. Gaussian noise with a decreasing variance,
i.e., Nt ∼ N (0, σ2

t ) where σt+1 = max{(1 − ε)σt, σmin}
with ε = 10−4, σ0 = 1 and σmin = 0.01. The actor/critics
are trained every Ttrain = 5 slots. We have two phases, the
training phase (50000 slots) where the actor/critics are trained
periodically while interacting with the environment, and the
testing phase (1000 slots) in which the trained actors are
used to select powers without learning. We also found that
normalizing the inputs of the actor/critic networks is crucial to
stabilizing the training. Hence, each interference measurement
Ii at BS i (see (10)) is scaled to [0, 1] via I ′i =

Ii−Imin
i

Imax
i −Imin

i

where Imax
i and Imin

i are the maximum and minimum possible
interference at BS i. We take Imin

i = 0 and Imax
i can be

estimated by letting all BSs transmit with maximum powers
and observing the interference.

The proposed scheme is compared to two state-of-the-art
power allocation schemes WMMSE [18] and FP [19]. These
are both centralized algorithms with superior performance
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Fig. 4: Throughput performance during training under different configurations.

which is hard to beat in general. For example, several learning-
based methods [4], [29] have been shown to approximate
their performance. However, the performance of WMMSE/FP
depends on heuristic parameter initialization whose impact is
unclear. The closed-form FP algorithm [19, Alg. 3] is used in
our simulation. For both schemes, we assume that the required
CSI can be obtained with no delay at the beginning of each
slot. We then run 2000 iterations to obtain a stationary power
allocation. We also have two additional baselines which are
full reuse (maximum power) and random power allocation.

B. Simulation Results

The simulation results are presented in this section. Each
result is an average of three independent simulations run over
the same channel realizations to neutralize the performance
variance due to random explorations. Each data point on the
throughput curve is an average of the previous 100 slots.

We first discuss the results (Fig. 4) corresponding to the
smaller four-BS network with various beam configurations.
In this case, each BS only has three neighbors, so local
observations of all BSs are used to train the critics. Fig. 2a
represents a typical scenario where the set of scheduled UEs
{(0, i),∀i} are located at the cell edge and experience strong
interference due to beam overlapping. The antenna MSR and
beamwidth are set to be 10 dB and 30◦. From Fig. 4a, it can
be seen that the proposed scheme converges in roughly 40000
slots and achieves slightly higher throughput than FP and
WMMSE. Fig. 2b represents the case of sparsely distributed
wide beams with relatively low power concentration (3 dB-60◦

beams with scheduled UEs {(2, i),∀i}). Fig. 4b shows that the
proposed scheme achieves superior performance than the base-
lines, especially for WMMSE which only has slightly better
performance than full reuse. Finally, the proposed scheme is
evaluated on a configuration with no beams (BS antennas are
omnidirectional, see Fig. 2c with scheduled UEs {(1, i),∀i}.
This configuration may not be practical for mmWave but it
shows the extendability of our scheme to general wireless
networks besides mmWave. The corresponding result shows
that our scheme achieves higher throughput than FP and
outperforms WMMSE by a significant margin. In summary,
the above results reveals that our scheme is capable of adapting
to different interference regimes as implied by the various
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Fig. 5: Performance over the general topology.

beam/UE configurations.
Fig. 5 shows the result corresponding to the larger network

of Fig. 3. The antenna MSR and beamwidth are configured
as 20 dB and 45◦. Each BS shares local observations with
at most four of its neighbors. Fig. 5a depicts the throughput
performance during training. The proposed scheme converges
in roughly 32000 slots and achieves similar performance to
WMMSE and is slightly lower than FP. This demonstrates the
scalability of the proposed scheme. The learned policy is then
tested for 1000 slots over another randomly generated channel
realization with a smaller correlation of ρ = 0.1. Note that
the exploration noise is removed during testing. The empirical
cumulative density function (CDF) of the average throughput
during testing is shown in Fig. 5b. Although the channels are
less correlated and harder to be tracked, the learned policy still



maintains a very close performance to WMMSE. FP achieves
higher throughput but has a less concentrated distribution than
the proposed scheme. This demonstrates the generalization
ability of the proposed scheme.

V. CONCLUSION

In this work, we presented a novel distributed power al-
location scheme for mmWave downlink using multi-agent
deep reinforcement learning. The proposed scheme utilizes a
centralized-training-distributed-execution framework to enable
autonomous power allocation based on local measurements of
the base stations. The non-stationarity issue due to multi-agent
participation is addressed by conditioning the Q-function of
each agent on the actions of its neighboring agents. Simulation
showed that the proposed scheme achieves similar or better
throughput performance than the state-of-the-art non-learning-
based approaches including FP and WMMSE. It was also
demonstrated that the proposed scheme adapts well to a wide
range of beam and user configurations.
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