

DICE Conference Presentations

April 2023

Jeren M Browning, Katherine Neis Wilsdon, Ross Kunz

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

DICE Conference Presentations

Jeren M Browning, Katherine Neis Wilsdon, Ross Kunz

April 2023

Idaho National Laboratory Idaho Falls, Idaho 83415

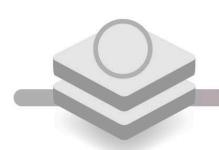
http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517, DE-AC07-05ID14517

What is Digital Engineering?

Digital engineering transforms the way we **design** and **operate** energy assets:

- 1. Delivers <u>semi-autonomous design</u>, <u>autonomous operation</u>, and <u>real-time anomaly detection</u>
- 2. Drives research across compute platforms with integrated human centered visualization
- 3. Integrates threads of data, visualizations, AI/ML, and physics models into a cohesive digital twin

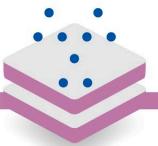


Level 1Siloed Program

Data and documents disconnected

Level 2Content Management

Document storage centralized



Level 3
Data Lake

Data storage centralized

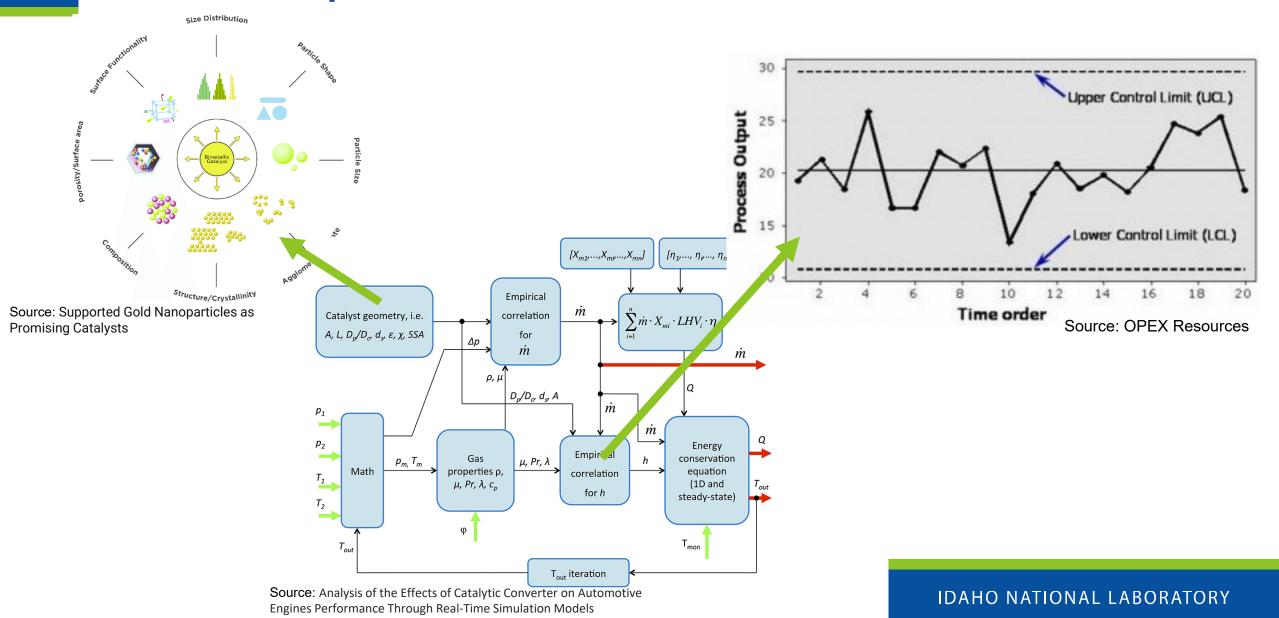
Level 4Digital Thread

Holistic connection of data across lifecycle

Level 5Digital Twin

Real-time digital asset integrated into physical asset

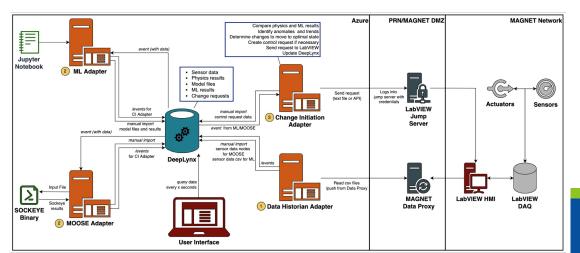
Traditional Operations and Data Science: Micro to Macro

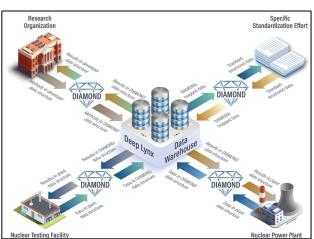


Towards Advanced Analytics / Automation

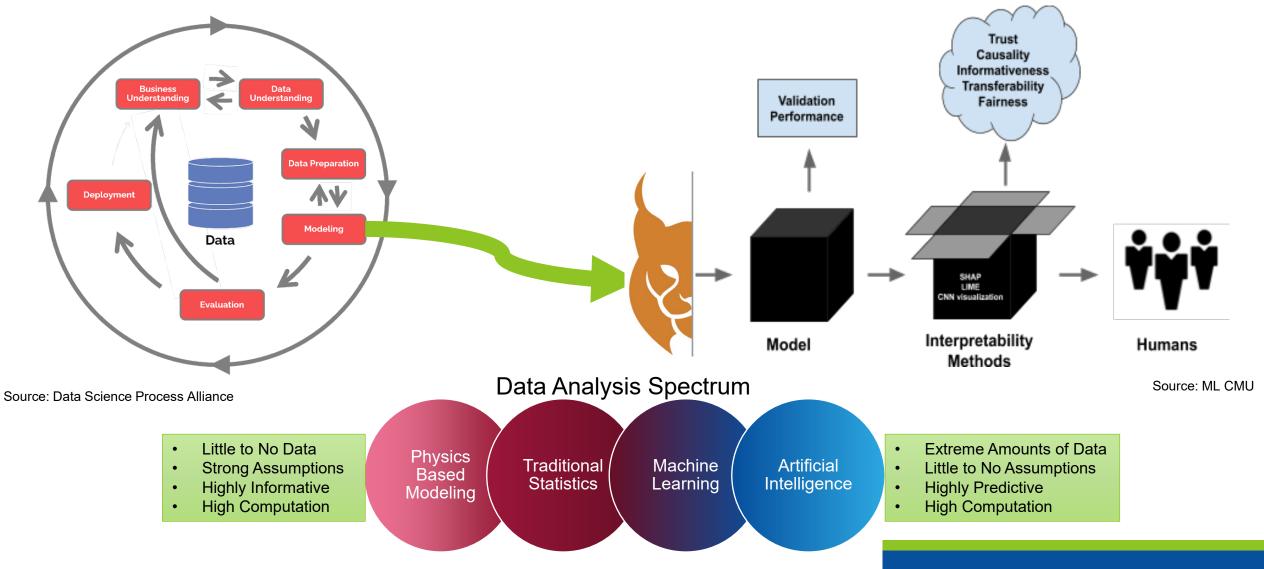
Problems:

- Multiple data streams / multiple responses to predict
 - Must handle multiple sensor integration / prediction
- Real time operations
 - Must be computationally fast (potentially without network connections)
- Scientific meaning behind measurements
 - Must provide interpretable results





Explainable Al: Scientific Measurements & Interpretability



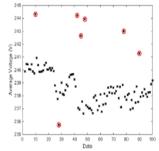
Potential Solution: SEARCH

- Built in connections to Deep Lynx for ease of interaction
- Basic analysis of outliers / imputation / distributions
- Provide an *initial* set of analysis for a data scientist
 - Combination of interpretable and more opaque methods
 - No free lunch!
- Dimension reduction and interpolation
- Common set of metrics and permutations of data sets
- Built in documentation of methodologies and generalized interpretation of results
- Written in Rust for computational efficiency

SEARCH: Backend

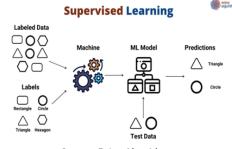
Store: Deep Lynx, CSV, JSON

Explore: Automated Unsupervised Learning



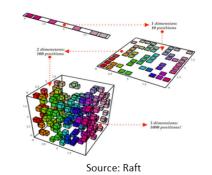
Source: Fast Data Clustering and Outlier Detection using K-Means Clustering on Apache Spark

Assess: Automated Supervised Learning

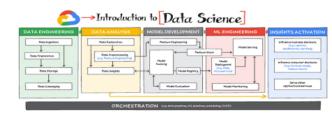


Source: Enjoy Algorithms

Reduce: Dimension Reduction



Holistic: Document Creation and Explanation



Source: Google Cloud Blog

Store

Explore

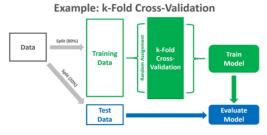
Assess

Reduce

Confirm

Holistic

Confirm: Multiple Iteration Testing



Source: David Caughlin

Example Use Case: MAGNET

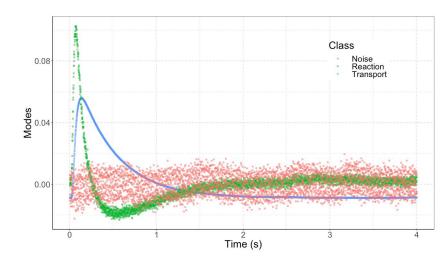
- Problem:
 - Autonomous prediction and control of heat pipe temperature
- Solution:
 - Local interpretable machine learning with anomaly detection

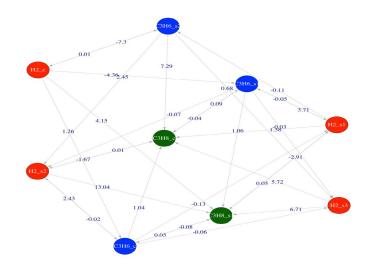
- Results:
 - 99%+ forecast accuracy over the course of the demonstration
 - Listed as one of the "11 Big Wins for Nuclear Energy in 2022" by DOE https://www.energy.gov/ne/articles/11-big-wins-nuclear-energy-2022
 - Listed as a "Nuclear Milestone" by DOE
 https://www.energy.gov/ne/articles/idaho-national-laboratory-demonstrates-first-digital-twin-simulated-microreactor

Example Use Case: Dynamic Chemical Engineering

Problem:

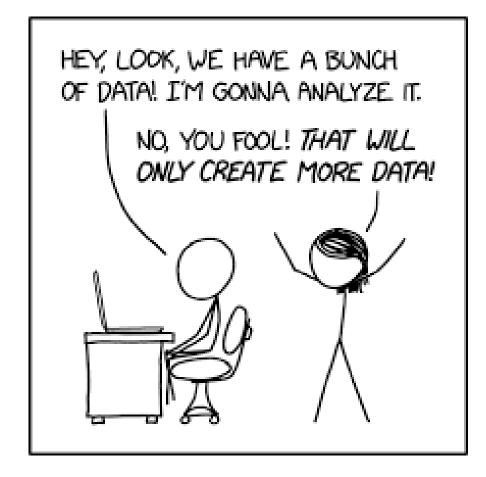
- There exists a "materials and pressure gap" for understanding industrial applications via firstprinciples modeling and simulation
- Need to understand governing equations directly from data
- Proposed solution:
 - Combination of chemical engineering, machine learning, and dynamic systems theory
- Benefits:
 - Data-driven understanding of a process
 - Better connection from first-principles to experiments





Benefits

- A low resource intensive software package based on interpretable machine learning
- Combination of statistics, machine learning, and dynamic control system engineering
- An autonomous prediction of real time operations with human-in-the-loop interactions (subject matter experts and data scientists)



Source: XKCD

Digital Engineering Conference

April 25 & 26 | Idaho Falls

Jeren Browning Katie Wilsdon

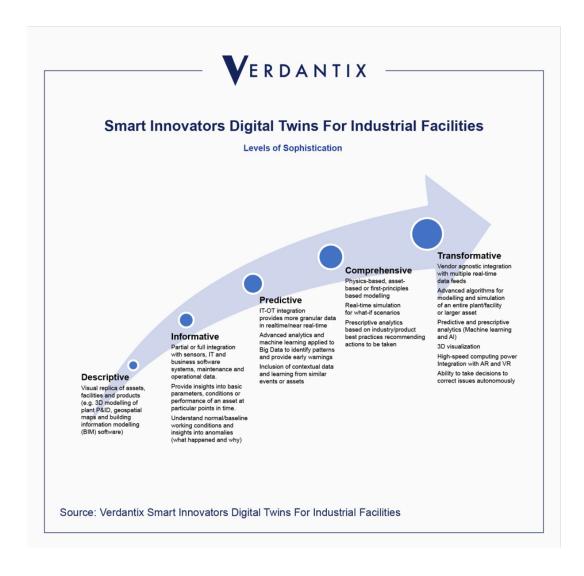
Transformational Digital Twins for Anticipatory and Automated Control

Fission Battery Initiative

- Nuclear energy systems delivered as a "plug-and-play" service
- Five key attributes

Can a digital twin be an enabling technology for <u>unattended</u> fission batteries?

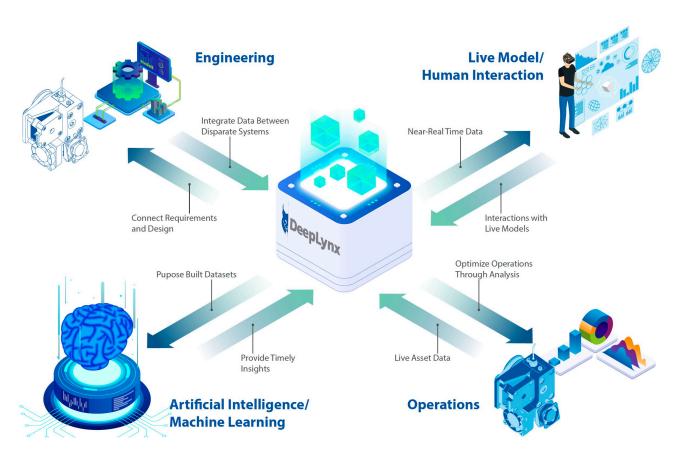
Digital Twin Forms and Levels



- 1. Descriptive: Visual replica
- 2. Informative: Integration with operations (sensor data)
- 3. Predictive: Basic insights through data-driven methods
- 4. Comprehensive: Real-time simulation and prescriptive analytics
- **5. Transformative**: Autonomous (automated) operation

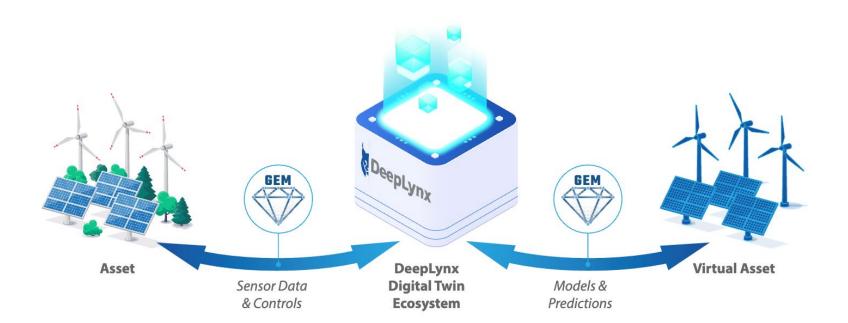
Digital Twin Maturity Model

- Define architecture and ontology via
 Model-Based Systems Engineering and create the 3D representation
- Integrate data into a digital thread
 Deep Lynx and Associated Adapters
- Provide explainable prediction of asset performance and reliability
 Explainable AI
- Integrate first-principles models
 MOOSE Multi-Physics
- Autonomous asset prediction and/or operation for physical assets
 Control Adapters



DeepLynx Data Warehouse

- Dynamic ontological and time series storage of digital twin data streams
- Event system to push and pull data in real-time around a digital twin
- Heterogeneous architecture (local, cloud, edge)



Integrations with the following data sources:

- AutoDesk Vault (CAD)
- AVEVA (BIM)
- Hololens (MR)
- UNC (HPC)
- Lab View (DAQ)
- IBM Jazz ELM (RM)
- Innoslate (MBSE)
- Mathematics (DiffEq)
- MOOSE (Multi Physics)
- ML Adapter (AI/ML)
- Primavera P6 (Schedule)
- SERPENT (Neutronics)
- RAVEN (TEA)
- And more

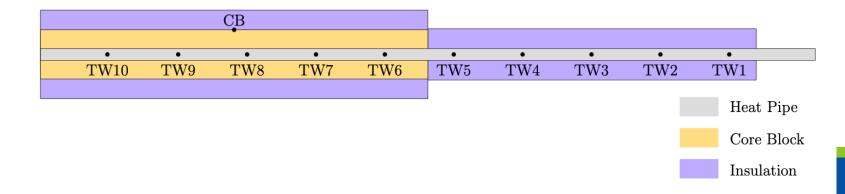
Microreactor AGile Non-Nuclear Experimental Test Bed (MAGNET)

- Thermal-hydraulic and materials performance test chamber for design verification & validation
- Expandable design with integrated power conversion unit (PCU)

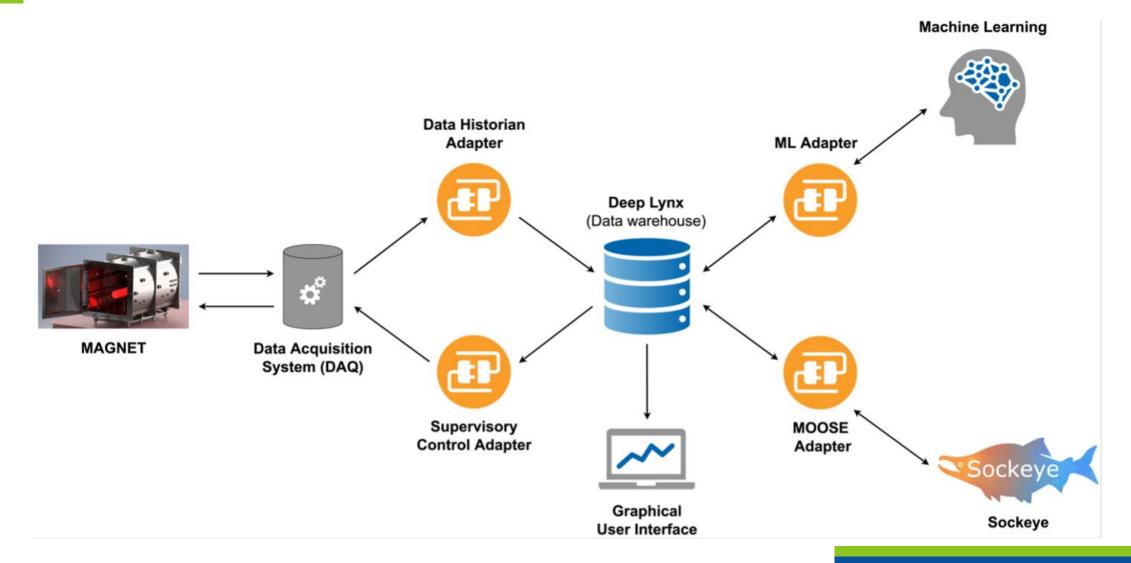
Parameter	Value
Chamber Size	5 ft x 5 ft x 10 ft
Heat Removal	Liquid-cooled chamber walls, gas flow
Connections	Flanged for gas flow and instrumentation feed through and viewing windows
Coolants	Air, inert gas (He, N2)
Gas flow rates	Up to 43.7 ACFM at 290 psig
Design pressure	22 barg
Maximum power	250 kW
Max Temperature	750 C
Heat Removal	Passive radiation or water-cooled gas gap calorimeter

Hypothesis

- The digital twin can:
 - Predict future temperatures of heat pipe thermocouples
 - Use predictions to send control requests to the HMI
- Experiment Plan:
 - 1. Manually adjust the temperature set point to an upper or lower limit.
 - 2. As the heat pipe approaches the limit, the digital twin predicts the temperature will exceed the limit.
 - 3. The digital twin produces a control request which the HMI can apply to change the temperature set point back to the baseline temperature.



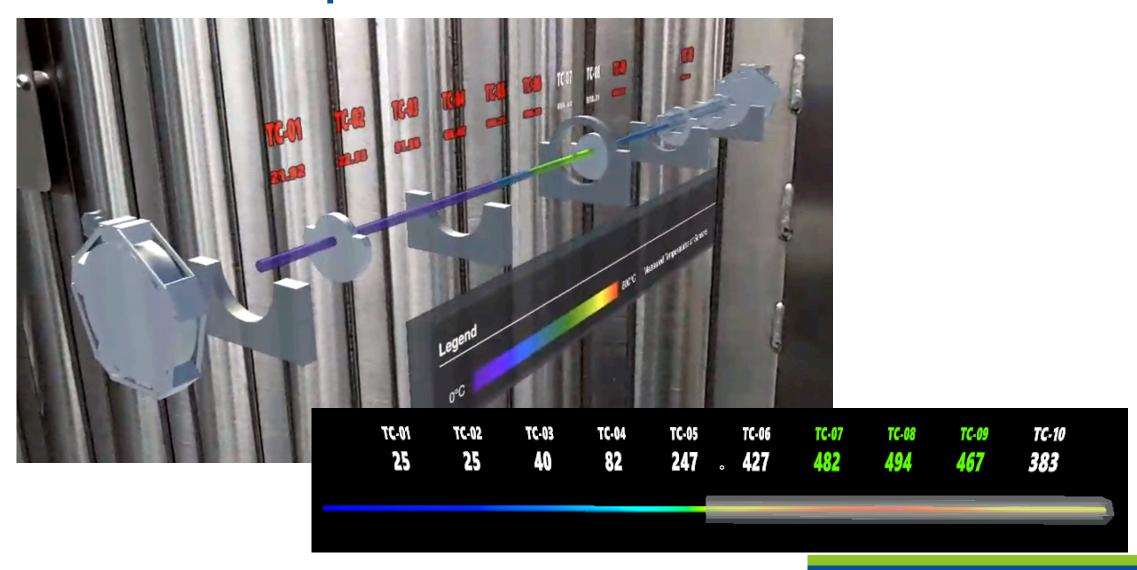
Digital Twin Architecture



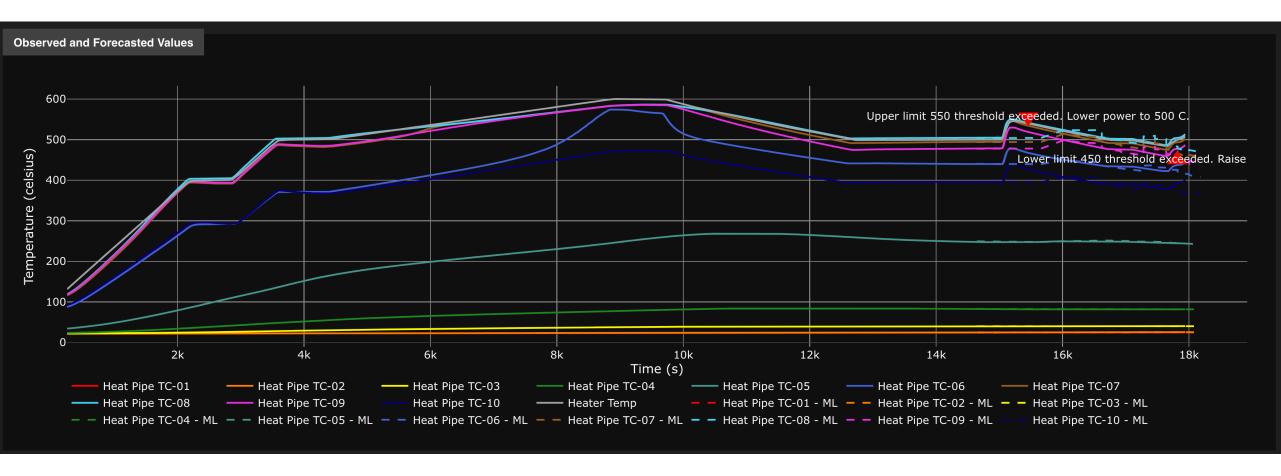
March 30 2022 Test

Video: https://www.youtube.com/watch?v=tRDjY3DZNZM

Live 3D Heat Pipe Model



Test Results



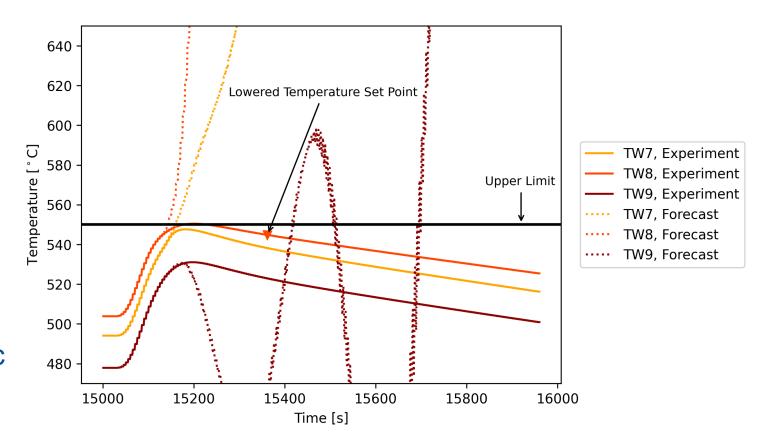
The Upper Limit Test Case

Result

 Reached the upper limit before the digital twin could react

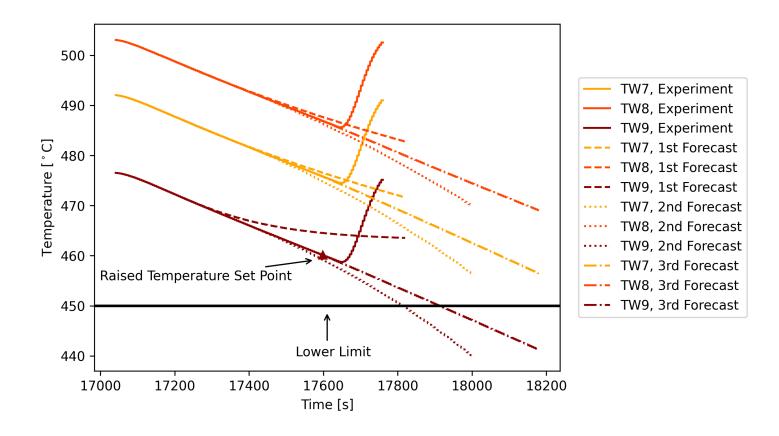
Problem

- Missing a control for the ramp rate
- Expected ramp rate of 100°C per hour
- Rose 50°C in 2 min 20 sec



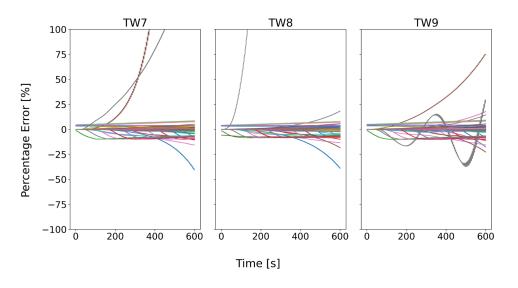
The Lower Limit Test Case

- Result
 - Self-adjusted before reaching the lower limit
 - The digital twin adjusted the temperature set point to baseline when the heater temperature (not shown) reached 483°C



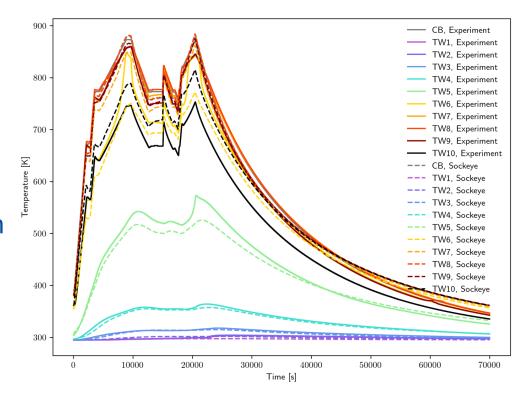
Machine Learning Approach

- Two Stage ML Process
 - 1. robust variable selection between sensors
 - 2. multivariate forecasting
- Variable selection
 - ML model: robust elastic-net regression using lasso penalties
 - Determines relationships between sensors accounting for any outliers
- Multivariate forecasting
 - ML model: vector autoregressive (VAR) model
 - Extrapolate the sensor information in time
- Result
 - Error: MAPE < 0.33% and RMSE of 2.3 °C (except for two inflection cases due to ramp rate changes)



Sockeye Multiphysics Results

- Heat Pipe Model
 - 2D heat conduction model: heat pipe cladding and core block
- Experimental Observation
 - Isothermal operation was achieved for two short durations with only a few thermocouples
- Assumption
 - The vapor core had the thermal conductivity of sodium vapor at 600 K, which is roughly <u>0.04</u> W/(m-K)
 - A fully operating heat pipe should have an effective vapor core thermal conductivity of <u>10⁵-10⁸</u> W/(m-K)
- Conclusion
 - This dataset cannot be used for the validation of operational heat pipe models, only for the heat transfer model of the whole assembly



What's Next?

- Increase the intelligence of digital twins
 - Comprehensive use of sensor and prediction data towards autonomous operation
 - Examine tailored applications of ML and physics predictions
- Build and validate the use of digital twins for nuclear (microreactors) and integrated energy systems

Check out the MAGNET demonstration during lunch today (12 – 1:30)

Digital Engineering Conference

April 25 & 26 | Idaho Falls

