

A709 Code Case Design Parameters

June 2023

Ting-Leung Sham

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

A709 Code Case Design Parameters

Ting-Leung Sham

June 2023

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

A709 Code Case Design Parameters

Joint ART Materials/AMMT Program Review DOE Headquarters, Germantown, MD June 5-8, 2023

Sam Sham Idaho National Laboratory

Acknowledgment

Data from Argonne (Xuan Zhang), Idaho (Heramb Mahajan),
 Oak Ridge (Yanli Wang)

RD-23IN040410, A709 Design Rules - INL

Scope

- Initiate efforts to develop design parameters such as allowable stresses, isochronous stress-strain curves, etc., using A709 data generated from the code case testing tasks
- Support submittal of the first A709 Code Case to ASME by 2025

Structural Failure Modes for Division 5 Class A Components

- Class A design rules are based on design-by-analysis approach
 - Sought to provide a reasonable assurance of adequate protection of structural integrity
 - Based on design against structural failure modes; four design evaluation checks

Time Independent Failure Mode	Category	Design Evaluation Procedure	Time Dependent Failure Mode	Category	Design Evaluation Procedure
Ductile rupture from short- term loading	Load-controlled	Primary load check	Creep rupture from long- term loading	Load-controlled	Primary load check
Gross distortion due to incremental collapse and ratcheting (low temperatures)	Deformation- controlled	Strain limits check	Creep ratcheting due to cyclic service	Deformation- controlled	Strain limits check
Loss of function due to excessive deformation	Deformation- controlled	Strain limits check	Creep-fatigue failure due to cyclic service	Deformation- controlled	Creep-fatigue check
Buckling due to short-term loading	Deformation- controlled	Buckling Check	Creep-buckling due to long-term loading	Deformation- controlled	Buckling Check

Design Parameters Required to Address Failure Modes for Class A Components

Design Parameters	Required Test Data	
Allowable Stresses		
• S_m : based on yield and ultimate strengths at temperature	Tensile data at temperature (time-independent)	
 <i>S_t</i>: based on time to 1% total strain, time to onset of tertiary creep, time to rupture <i>S_r</i>: based on stress to rupture 	Creep rupture data with full creep curves (time-dependent)	
 S_{mt}: lesser of (S_m, S_t) S₀: lesser of (S, S_{mt}@300,000h) 	Derived design parameters	
R: Stress rupture factor - based on rupture strengths of base metal and weldment	Stress rupture data from base metal and weldment (time dependent)	
Thermal aging factors on yield and ultimate	Tensile data of aged material (time-dependent)	
Isochronous stress-strain curves constructed based on creep tests	Tensile stress-strain curves (time-independent), and creep strain data up to 3% (time-dependent)	

Design Parameters	Required Test Data
Fatigue design curves	Strain-controlled continuous cycling tests
Creep-fatigue interaction diagram	Strain-controlled cyclic tests with hold times
EPP design parameters	Two-bar and SMT tests; cyclic stress- strain curves
Inelastic material model parameters	Test data for other design parameters; and strain rate change and thermomechanical cycling
Huddleston effective stress parameters	Multiaxial creep rupture data
External pressure charts	Tensile stress-strain curves (time-independent)
Time-temperature limits for external pressure charts	Isochronous strain-strain curves

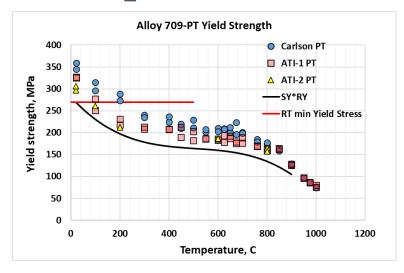
Some design parameters are for setting design limits; some are for providing behavioral trends to support design evaluations

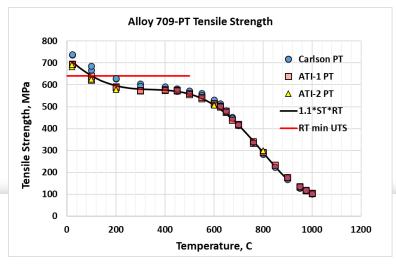
Ongoing A709 Code Case Testing

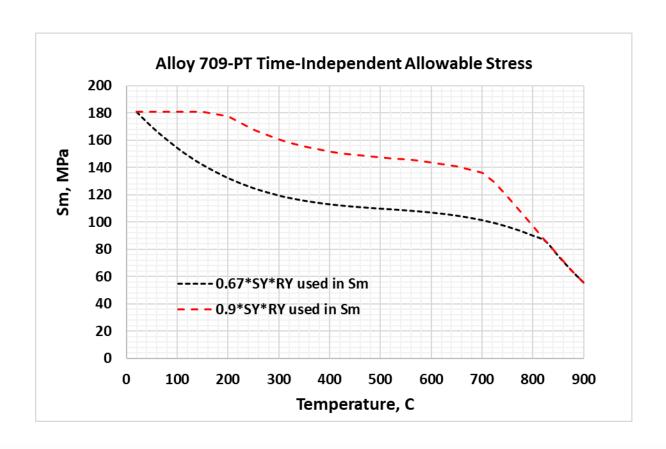
- Being performed at Argonne, Idaho and Oak Ridge
- Base metal
 - Tensile, creep, fatigue, creep-fatigue, SMT
- Weldment (matching filler metal, GTA)
 - Cross weld creep rupture
 - Tensile, fatigue and creep-fatigue (selective)

Code Yield and Tensile Strengths

- The ASME, Section II procedure to develop the Code yield and tensile strengths at temperature is somewhat convoluted
 - Yield stresses at temperature are normalized by the room temperature value from the same heat
 - The normalized yield stress data are used to establish a "trend curve" (R_Y) using polynomial fit
 - The trend curve is then multiplied by the room temperature specification minimum yield strength (S_Y) to determine the Code yield stress at temperature, $S_Y R_Y$
 - Procedure for UTS is similar, except that an additional factor of 1.1 is used to determine the Code tensile strength at temperature, $1.1S_TR_T$

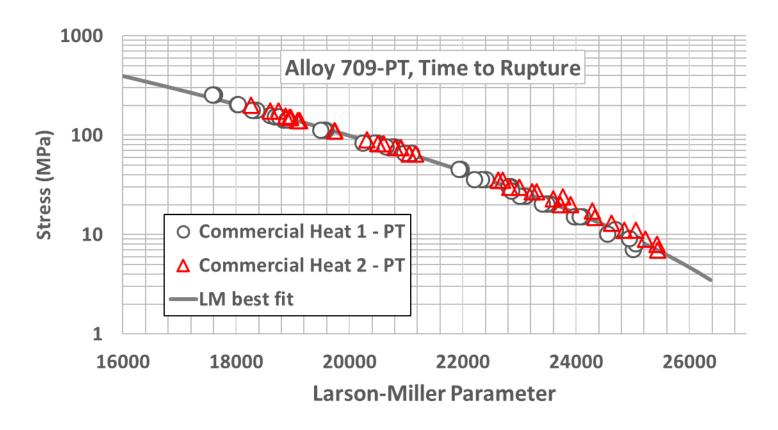



Time-Independent Allowable Stress Criteria


- Time-independent allowable stress, S_m , is determined as the lesser of
 - one-third of S_T , the room temperature specification minimum tensile strength
 - one-third of $1.1S_TR_T$, the Code tensile strength at temperature
 - two-thirds of S_Y , the room temperature specification minimum yield strength
 - two-thirds of $S_Y R_Y$, the Code yield strength at temperature
 - For austenitic stainless steels, nickel alloys, copper alloys, and cobalt alloys having an S_Y/S_T ratio less than 0.625, the two-thirds factor on the Code yield strength at temperature can be increased to 0.9, if the additional deformation does not impact the functions of the component
 - For A709, $S_Y/S_T = 0.42$

Preliminary A709 Time-Independent Allowable Stresses

Code Creep Rupture Stress


The Larson-Miller correlation for rupture stress and time is

$$log_{10}t_r=\left(\frac{1}{T_a}\sum_{p=0}^n a_p(log_{10}\sigma)^p\right)-C$$
, with a_p and C the regression parameters

Data variability is accounted for by the lower bound equation

$$log_{10}t_r = \left(\frac{1}{T_a}\sum_{p=0}^n a_p(log_{10}\sigma)^p\right) - C - h \times SEE, \qquad h = 1.654$$

Larson-Miller Fit for A709 Creep Rupture Data To-date

Quadratic Stress Polynomial Used

Comparison of Lower Bound Rupture Stress of A709 with 316H

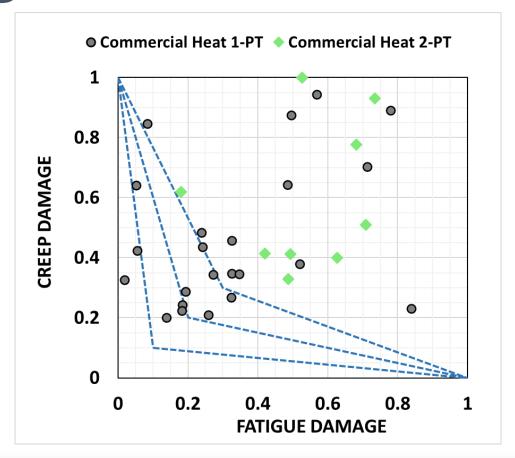
Tomporatura C	Ratio of lower bound rupture stress of A709 to 316H				
Temperature, C	65,000 h	100,000 h	300,000 h		
550	1.52	1.53	1.55		
600	1.61	1.61	1.64		
650	1.71	1.72	1.75		
700	1.84	1.86	1.91		
750	2.01	2.04	2.12		
800	2.26	2.31	2.44		
850	2.65	2.73	3.00		
900	3.35	3.54	4.25		

Evaluation of Constant StrainRange Creep-Fatigue Test Data

Creep Damage

$$\sum_{k=1}^{q} \left(\int_{0}^{t_k} \frac{dt}{T_d} \right), \qquad q = \text{\# of CF cycles to failure, } T_d = \text{average rupture time}$$

$$t_k = \text{hold time at the } k^{th} \text{cycle}$$


Creep damage integral during hold time computed cycle by cycle till failure

Fatigue Damage

$$\frac{n}{N_d}$$
, $n = \# of cycles to failure in CF test$

 N_d = average # of cycles to failure from separate fatigue tests under the same strain range and temperature as the CF test

Preliminary Creep-Fatigue Interaction Diagram

(0.1,0.1) or (0.2,0.2) are both reasonable intersection points

Summary

- Preliminary efforts have been started to develop design parameters from test data
- Thus far, most of the data evaluated were from the first two commercial heats
- Data from these commercial heats continue to support the creep strength advantage of A709 over 316H
- Design parameters will be refined as more data are available
- Work on the development of other design parameters will begin as data become available

Thank you

TingLeung.Sham@inl.gov

