

Baseline Graphite Characterization

June 2023

Arvin Burnell Cunningham

DISCLAIMER

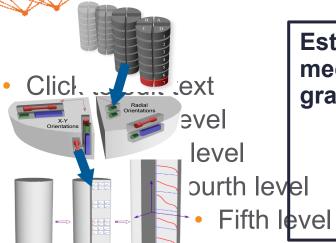
This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Baseline Graphite Characterization

Arvin Burnell Cunningham

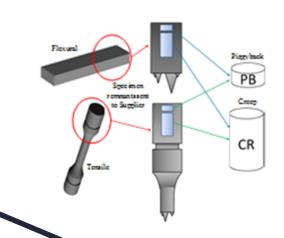
June 2023

Idaho National Laboratory Idaho Falls, Idaho 83415


http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 **Arvin Cunningham**

Baseline Graphite Characterization



Disseline Graph tercharacterization Purpose and Results

Establish the physical and mechanical properties of nuclear grade graphite and their variability...

- Intra Billet
- Billet to Billet
- Batch to Batch
- Grade to Grade

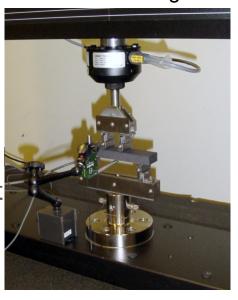
Method and procedure for obtaining data

- NQA-1 Qualified Data Set
- Manufacturing process improvement
- Initial selection of graphite
- Qualify graphite as a structural material (ASME)

Development of measurement techniques, standards and design code

- Split disc tensile strength
- ASME BPVC.III.5
- ASTM D02.F0

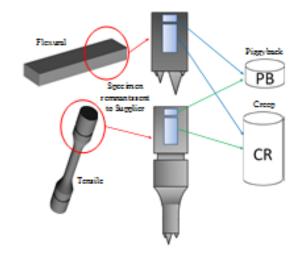
Baseline of un-irradiated properties for comparison to AGC irradiated properties

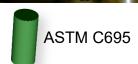

- Statistically valid
- Scalar value
- Distribution

Clase in e dit obest y Mislasurements

Compressive Strength

Flexural Strength




Tensile

Brazilian Disc

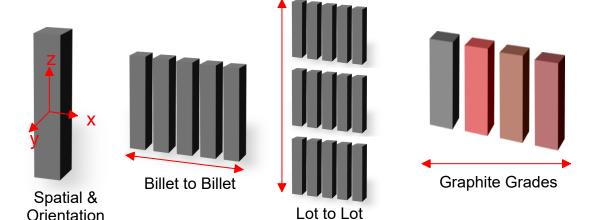
Physical Properties Testing

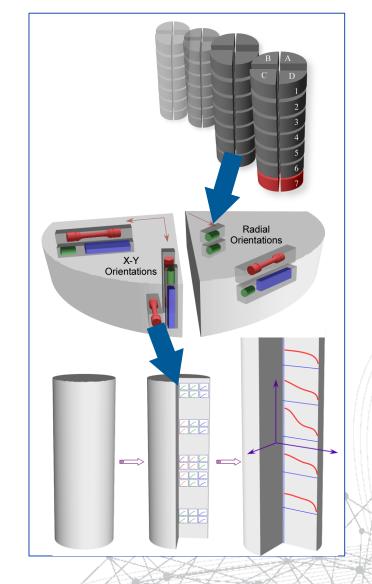
- Density
- Coefficient of Thermal Expansion
- Thermal Diffusivity

- Electrical ResistivityElastic Modulus
- - Young's
 - Shear

Case in earth antercharacterization Method

- Select necessary material properties


- Apply sampling planxt
 Perform standardized testing
 Evaluate/compare properties
 Build NQA-1 qualified database
 Apply the "system" and database to
 the evaluation and qualification of
 future grades of graphitefth level



- **Current Grades**
 - **NBG-18**
 - **PCEA**

 - **NBG-17**
- **Additional Grades**
 - IG-430

Blick Itoe Bitoly asste

- Billet XPC01D-35 of PCEA is currently being machined Second level
- The second billet of NBG 17 is complete in machining and a third the way done in testing Fifth level
- Over 23,800 NQA-1 qualified measurements thus far

Graphite	Laboratory	Billet #	Percent Complete							Data In	
			Machining	Mass and Density	Elastic Testing	Mechanical Testing	Thermal Testing	Data Report	Analysis Reports	NDMAS?	Notes
PCEA	ORNL	XPC01S8-11	100%	100%	100%	100%	100%	ORNL/TM-2015/765	ORNL/TM-2015/765	NO	Data spreadsheets were requested from ORNL
PCEA	INL	XPC02S8-7	100%	100%	100%	100%	100%	ECAR-3725	INL/EXT-13-30011	YES	
PCEA	INL	XPC01S8-9	100%	100%	100%	100%	100%	ECAR-6111	INL/MIS-23-70949	NO	
PCEA	INL	XPC02S8-5	100%	100%	100%	100%	100%	ECAR-6110	INL/MIS-23-70951	NO	
PCEA	INL	XPC01D3-35	66%							NO	
PCEA	INL	XPC01D3-36	100%	100%	100%	100%	100%	ECAR-3677	INL/EXT-16-39604	YES	
PCEA		Multiple Other Billets Available									
NBG-18	INL	635-4	100%	100%	100%	100%	100%	ECAR-3726	INL/EXT-14-33120, INL/EXT- 13-30011	YES	
NBG-18	INL	635-14	100%	100%	100%	100%	100%	ECAR-1930	INL/EXT-10-19910, INL/EXT- 13-30011	YES	
NBG-18	ORNL	635-6	100%	100%	100%	100%	100%	ORNL/TM-2010/219	ORNL/TM-2010/219	NO	Data spreadsheets were requested from ORNL
NBG-18		Multiple Other Billets Available									
2114	INL	A20568	100%	100%	100%	100%	100%	ECAR-5798	INL/MIS-22-65680	NO	
2114	INL	A20570	100%	100%	100%	100%	100%	ECAR-4322	INL/EXT-14-33120	YES	
2114	ORNL	116310	100%	100%	100%	100%	100%	2018/1038, 2019/1256	ORNL/TM-2018/1038, ORNL/TM-2019/1256	YES*	Data spreadsheets were requested from ORNL
2114		Multiple Other Billets Available									
NBG-17	INL	830-3	100%	100%	100%	100%	100%	ECAR-3727	INL/EXT-14-33120	YES	
NBG-17	INL	V104	100%			33%				NO	
IG-110	INL	089052-7	100%	100%	100%	100%	100%	ECAR-3621	INL/EXT-14-33120	YES	
IG-110	INL	10X69	100%	100%	100%	100%	100%	ECAR-4182	ECAR-4182	NO	

Sight biselite Maste Stite gth: ASTM Tensile Strength

Alternative text lev **Fourth** Fifth

Compressive load is applied to a disc-shaped specimen on edge, resulting in tensile stress transverse to the loading axis. The load at failure, P, and geometry of the specimen provide an indication of the tensile strength.

Designation: D8289 - 19

Standard Test Method for Tensile Strength Estimate by Disc Compression of Manufactured Graphite¹

original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval.

superscript epsilon (s) indicates an editorial change since the last revision or reapproval.

- 1.1 This test method covers testing apparatus, specimen preparation, and testing procedures for determining the splitting tensile strength of graphite by diametral line compression of a disk. This small specimen geometry (Test Method D7779) is specifically intended for irradiation capsule use. Users are cautioned to use Test Method C749 if possible for measuring tensile strength properties of graphite.
- 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.
- 1.3 All dimension and force measurements and stress calculations shall conform to the guidelines for significant digits and rounding established in Practice D6026.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.5 This international standard was developed in accordance with internationally recognized principles on standard ization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Rarriers to Trade (TRT) Committee

2.1 ASTM Standards:

C749 Test Method for Tensile Stress-Strain of Carbon and

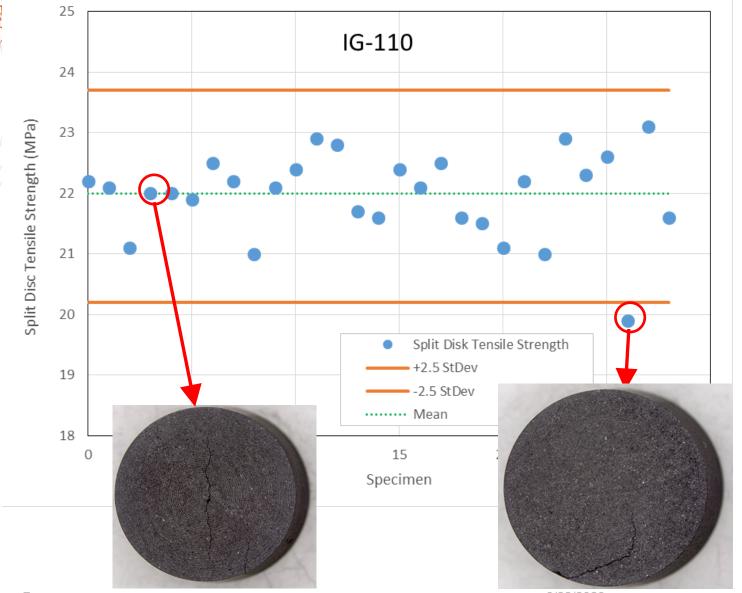
D4175 Terminology Relating to Petroleum Products, Liquid

- D6026 Practice for Using Significant Digits in Geotechnical
- D7542 Test Method for Air Oxidation of Carbon and Graph ite in the Kinetic Regime
- D7775 Guide for Measurements on Small Graphite Spec
- D7779 Test Method for Determination of Fracture Tough ness of Graphite at Ambient Temperature
- E4 Practices for Force Verification of Testing Machines
- E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods E691 Practice for Conducting an Interlaboratory Study to
 - Determine the Precision of a Test Method

- 3.1 Refer to Terminology D4175 for specific definitions.
- 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 splitting tensile strength, n-the tensile strength of a material estimated from a splitting compressive configuration such as that described here.

4. Significance and Use

4.1 By definition, the tensile strength of manufactured graphite is obtained by the direct uniaxial tensile test (Test Method C749). The C749 tensile test specimen is relatively large and is frequently incompatible with available irradiation capsule volumes, or oxidation apparatus (Test Method D7542) The splitting tensile test provides an alternate means of testing tensile properties on specimens that have severe geometric constraints and otherwise cannot meet the prescribed testing geometries of Test Method C749. By loading a disc-shaped specimen, on edge, under a compressive load, the resulting tensile stresses transverse to the loading axis provide a indication of the tensile strength properties of graphite. To obtain consistent and meaningful values of a splitting tensile strength, it is vital that the fracture initiate in the center of th disk and not along an edge. This standard test helps to ensure that the disk specimens break diametrally along the loading diameter due to tensile stresses that are perpendicular to the loading axis and that the fracture initiates at the center of the


$$\sigma_{sts} \approx \frac{P}{\pi LR} \left[1 - \left(\frac{b}{R} \right)^2 \right]$$

6/22/2023

¹This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcommittee D02.F0 on Manufactured Carbon and Graphite Products.

For referenced ASTM standards visit the ASTM website www.astm.ore.or

Clicktineedib Masteropter Split Disk Fracture

- This measurement technique originated in rock and concrete where the ratio of compressive to tensile strength is ~10. (Graphite ~3-4).
- Calculation of tensile stress in a compressed disc requires the fracture to initiate from the center of the disc.
- This occurs when the compressive strength is much higher than the tensile strength.
- Proper crack/fracture initiation is easily identifiable.

Blisk toe Gital batte ASTM D8289

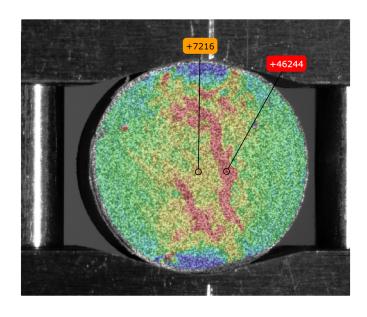
- Loading samples for split disc test

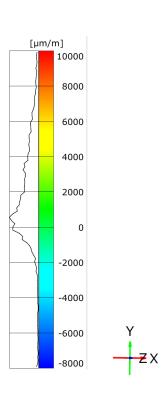

 ASTM-D8289-119 level
 - Third level
- The sample is loaded in the vertical orientation as to the grain direction
- Samples can be positioned With Grain (WG) or Against Grain (AG)
- The samples are shown without speckle pattern for clarity

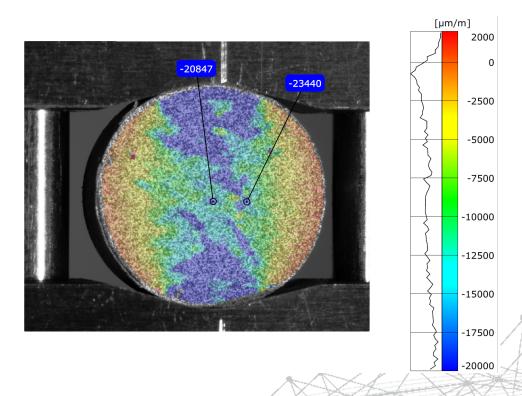
Bbck og tæd ið Mæstæti oitle

Fiducial mark

Digital Image Correlation edit Master title


- Use of DIC to corroborate current baseline data
- Click to edit text
 - Second level
 - Third level
 - Fourth level




Oliciate by diations ter title

- Click to edit text
 - S即會的性格nalysis
 Third level
 - - Fourth level

Point Analysis

ZX

11

Click to edit Master title

- Click to edit text
 - Second level
 - Third level
 - Fourth level
 - Fifth level

Thank You