

Quantifying Uncertainty of Deep Reinforcement Learning Based Decision Making for Operations and Maintenance of Nuclear Power Plant

July 2023

Ryan Matthew Spangler, Daniel Cole

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Quantifying Uncertainty of Deep Reinforcement Learning Based Decision Making for Operations and Maintenance of Nuclear Power Plant

Ryan Matthew Spangler, Daniel Cole

July 2023

Idaho National Laboratory Idaho Falls, Idaho 83415

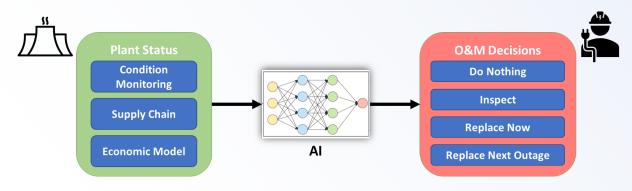
http://www.inl.gov

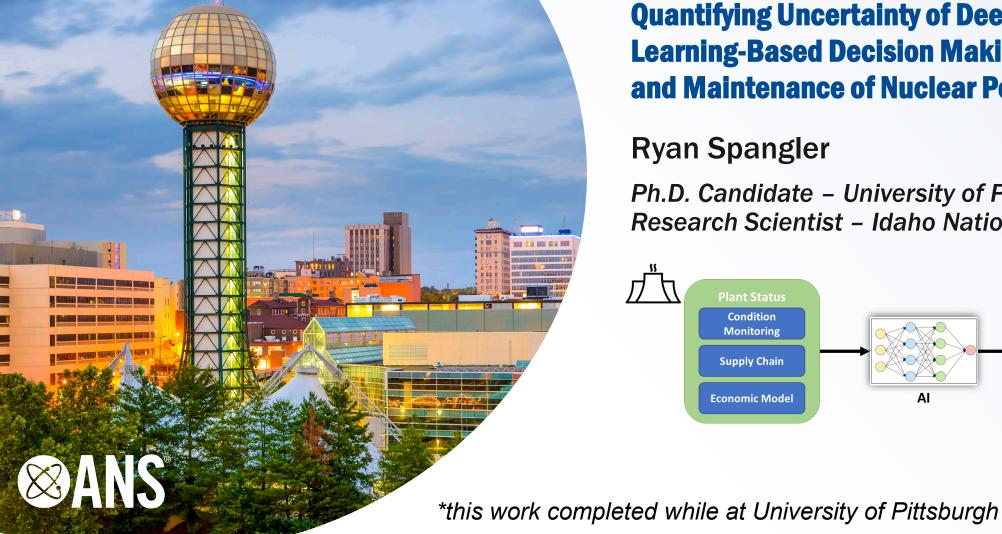
Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-NE0008909

Quantifying Uncertainty of Deep Reinforcement Learning-Based Decision Making for Operations and Maintenance of Nuclear Power Plant

Ryan Spangler

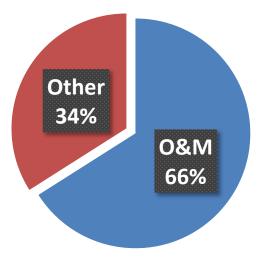
Ph.D. Candidate - University of Pittsburgh* Research Scientist - Idaho National Laboratory





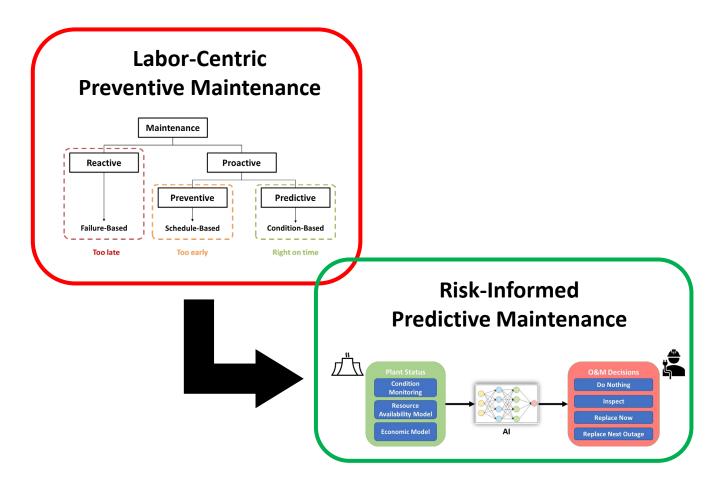
Motivation – Although nuclear power is reliable, it remains costly due to high operations and maintenance spending

Total Yearly Operating Budget



High-Cost Asset Management

- Unexpected maintenance/shutdown
- Overly conservative maintenance
- High staffing levels

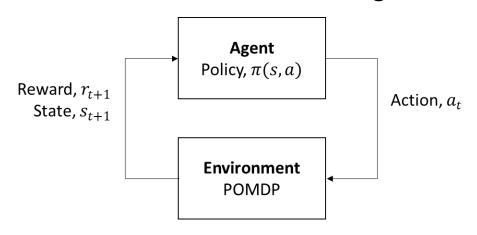


"Information has no value at all unless it has the potential to change a decision"

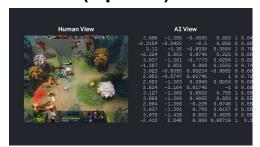
Sam L. Salvage, The Flaw of Averages

Approach – Using reinforcement learning techniques, we can evaluate multiple decisions for several components over time

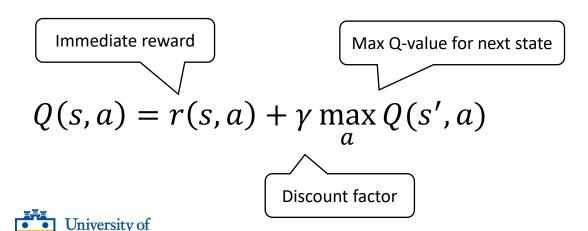
Reinforcement Learning



Dota 2 (OpenAl)



Go (Google DeepMind)

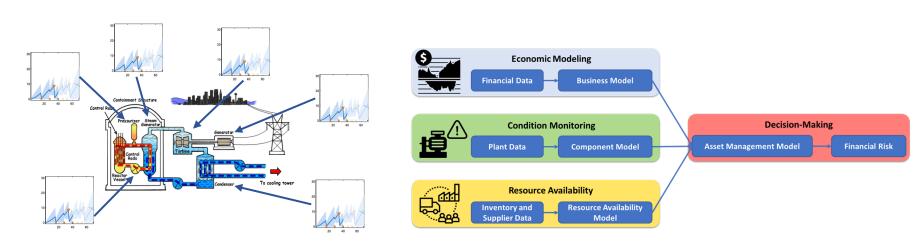


Pittsburgh_®

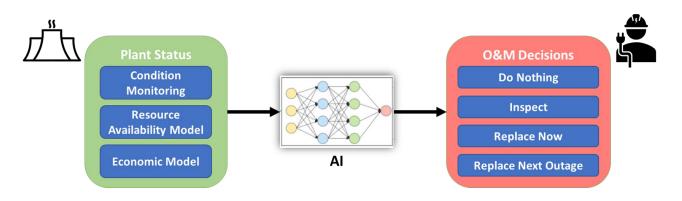
DRL Strengths:

- Long forecast horizons
- Uncertainty and partial observability
- Large action and decision spaces
- Multi-agent cooperation

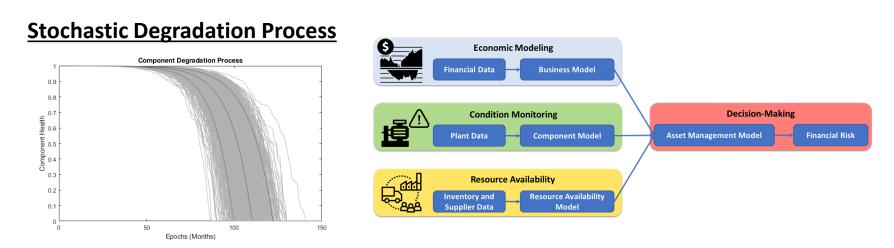
Reliability and Decision Modeling



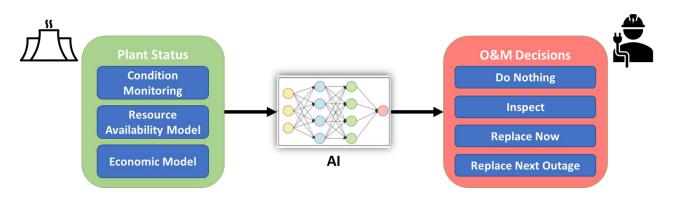
Decision Making



Reliability and Decision Modeling



Decision Making

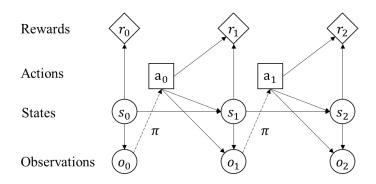


Reliability and Decision Modeling

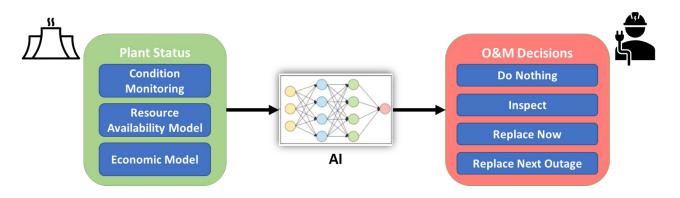
Stochastic Degradation Process

Component Degradation Process 0.9 0.8 0.7 0.9 0.6 0.7 0.0 0.0 0.1 0.1 0.2 0.1 0.3 0.2 0.1 0.5 Epochs (Months)

Partially Observable Markov Decision Process



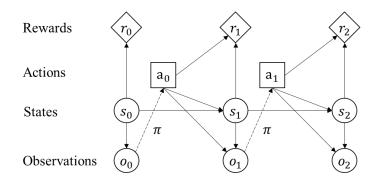
Decision Making



Reliability and Decision Modeling

Stochastic Degradation Process

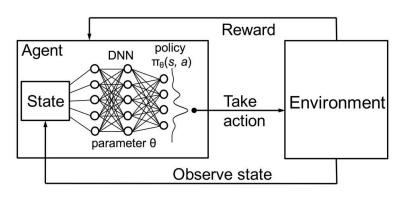
Partially Observable Markov Decision Process



Decision Making

Deep Reinforcement Learning

- Learns through trial and error
- Neural network maps states to actions
- Approximates optimal policy



Environment – To test the reinforcement learning algorithm, we created an environment with one degrading component with inventory management

State: (1) Component Health

(2) Inventory

(3) Outage Information

Maintenance (1) Do nothing

Actions: (2) Repair

(3) Replace

Inv. (1) Do nothing

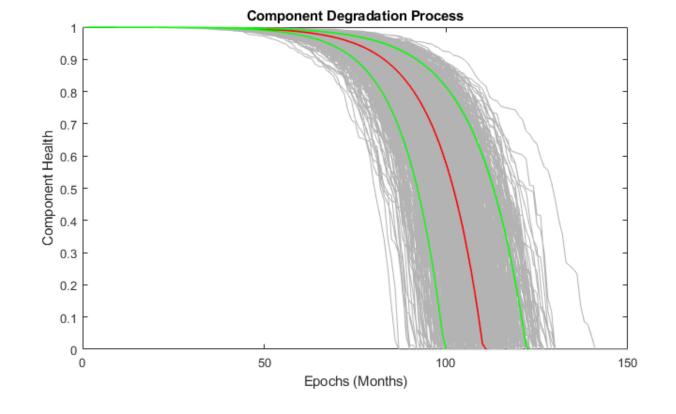
Actions: (2) Order spare

Costs: Storage = -1

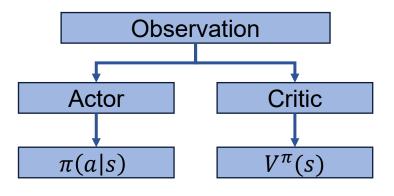
Repair = -5

Replace = -15

Unplanned shutdown = -100

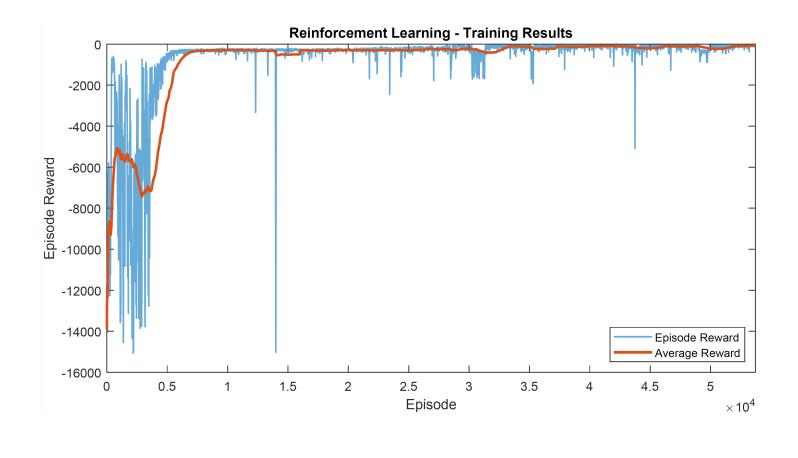


Training – The agent was successfully trained to make maintenance and inventory decisions, minimizing overall lifecycle costs

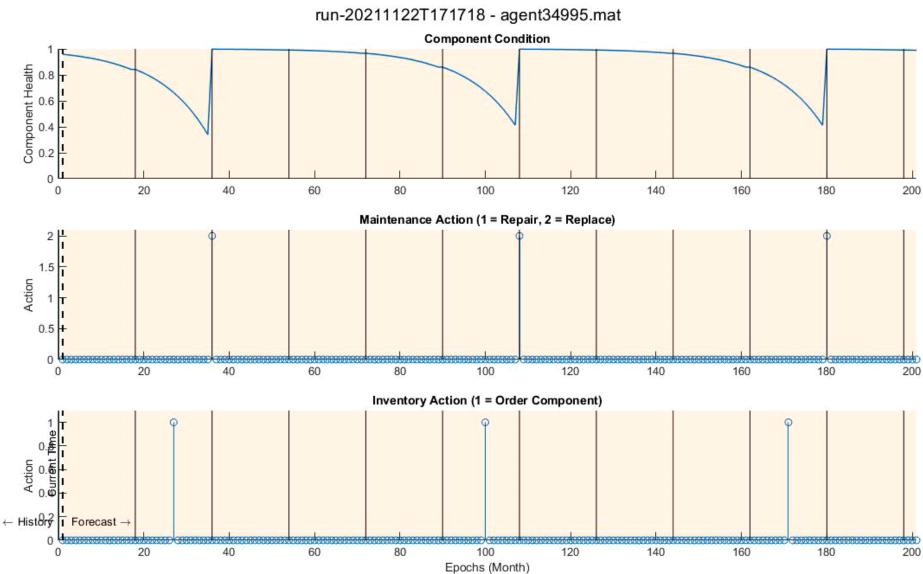


Hyperparameters

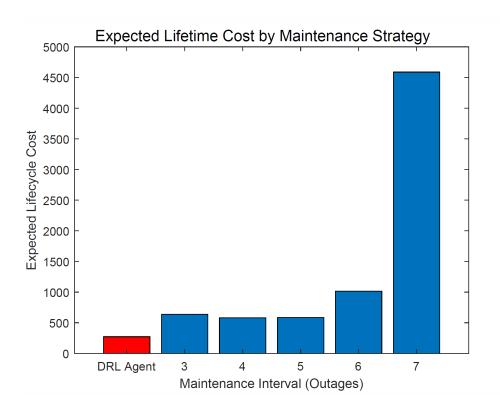
Parameter	Value
Algorithm	A2C
Network	Actor-Critic
Layers	2
Neurons/Layer	300
Discount Factor	0.999
Learning Rate	0.001
Optimizer	Adam

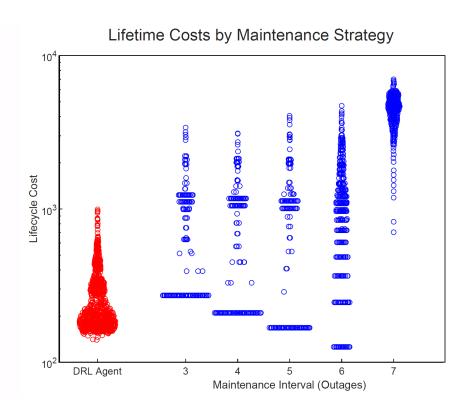


Results – Using the trained agent, we can evaluate its actions and effect on expected lifetime O&M costs



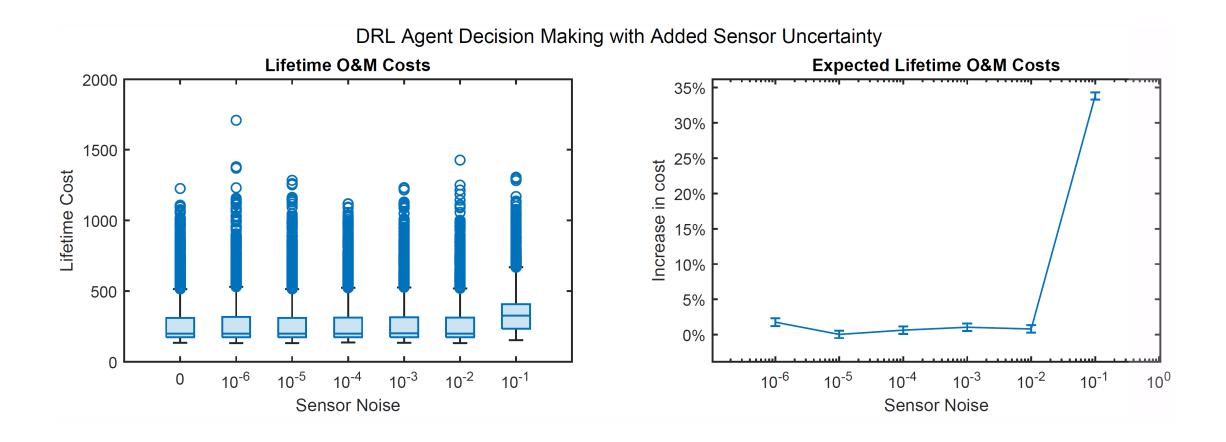
Results – The trained agent was simulated for 60 years and lowered lifecycle costs when compared to time-based strategies



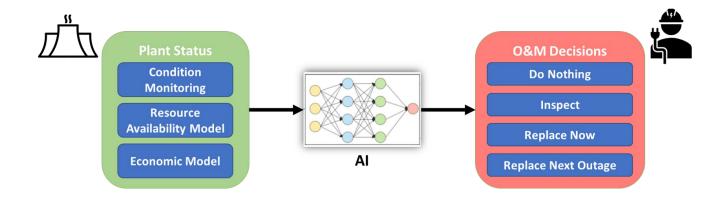


53% cost reduction in expected lifetime costs

Uncertainty – By adding observation noise, we can test the agent's performance with partial observability and uncertainty



Conclusion – By using deep reinforcement learning, we can create optimal policies that are robust to uncertainty



Ryan Spangler ryan.spangler@inl.gov

Daniel G. Cole dgcole@pitt.edu

