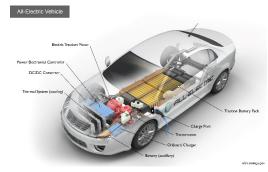


Development, Characterization, and Testing of Solid-State Electrolytes for Batteries

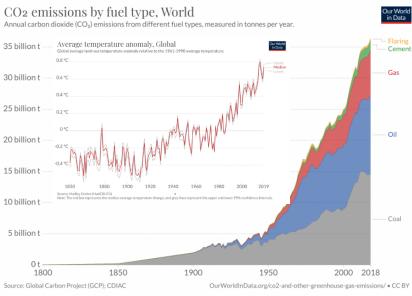

Corey Efaw 24 August 2023

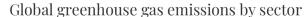
Funding #22P1066-006FP LRS #INL/CON-23-74274

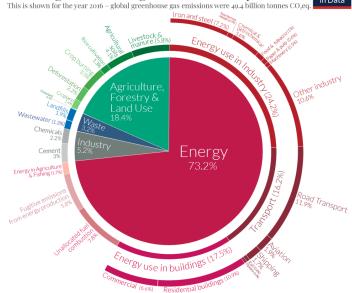
The Sales Pitch for Batteries

- Decarbonization!!
 - Roll out an electric vehicle (EV) fleet ASAP Untapped, enabling markets
- - eVTOL, aerospace, communications, etc.

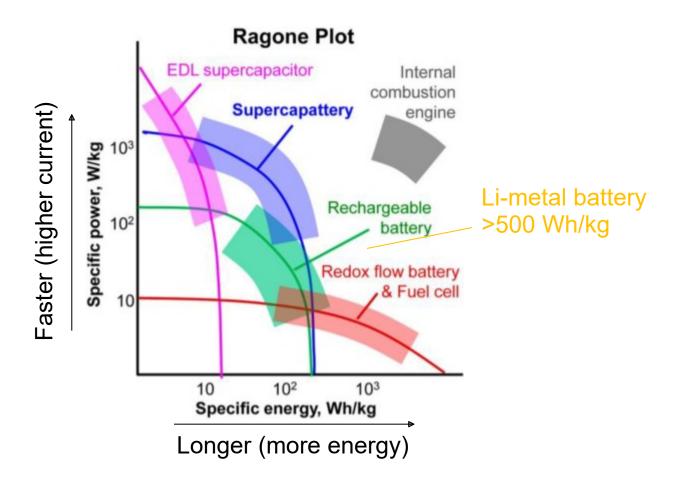
DOE - Alternate Fuels Data Center

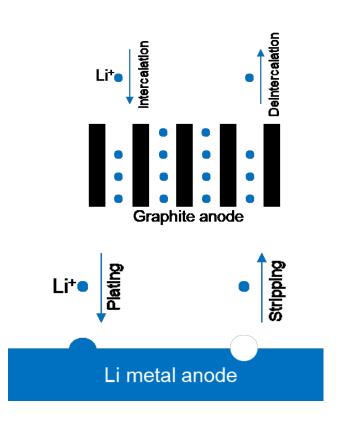

Heart Aerospace – 19-seat, 400 km (~ 250 miles), all-electric




Sion Power "Airbus Zephyr"

Archer Aviation's "Midnight" eVTOL model

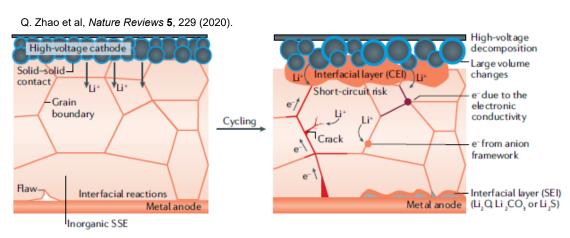




Limitations to Batteries

- Benchmark chemistries are low in energy, but stable
- Next-generation chemistries (Li-metal) are more volatile

 Inherent instabilities present with plating/stripping (de)lithiation mechanisms

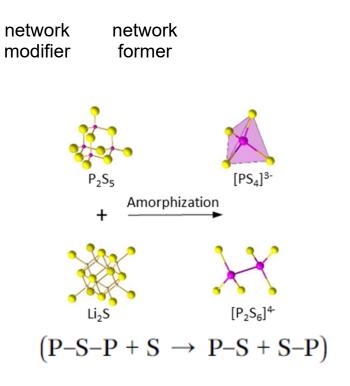


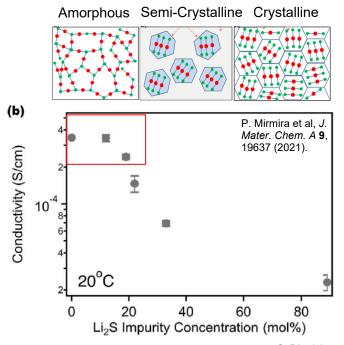
Sulfide-Based Solid-State Electrolytes

- + Improved safety lack of flammable compounds
- + Provides a physical barrier to dendrites & active material dissolution + Electrical insulator & ionic conductor (10-3 10-4 S/cm)
- Requires ultrahigh (> 1 MPa) pressure to reduce interfacial impedances
- Poor stability in humidity ()

Issues are driven by ionic diffusion kinetics, electrode-electrolyte interfaces, and chemo-mechanical stability.

Material Selection – LPS


75-25 Li₂S-P₂S₅ by mole (LPS) electrolyte elected as base-material of choice
 Desire low void & grain boundary LPS – dense & highly amorphous


A. Hayashi et al, *J. Am. Ceram. Soc.*84 (2), 477 (2001).

10⁻³

50

Mol % Li₂S

Li₂S Impurity Concentration (mol%)

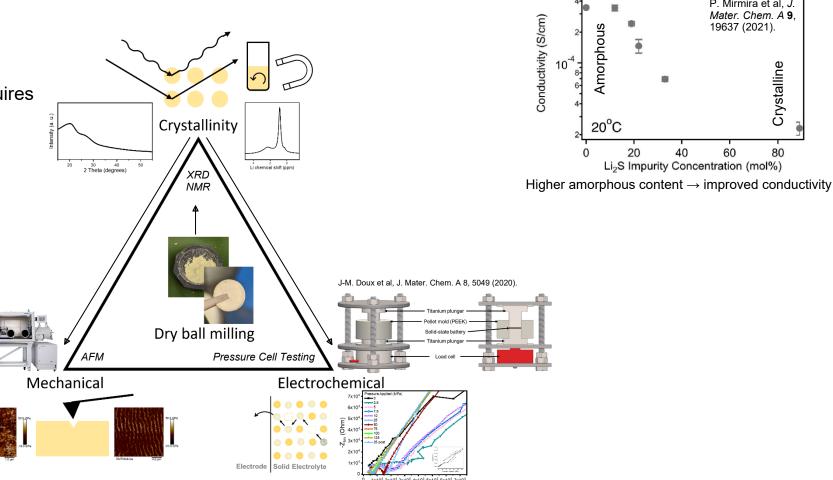
Mater. Chem. A 9, 19637 (2021).

(b)

20°C

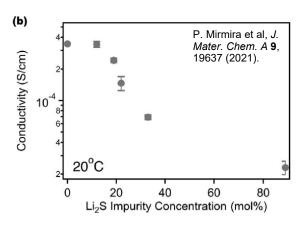
Material Selection & Methods

- 75-25 Li₂S-P₂S₅ by mole (LPS) electrolyte elected as base-material of choice


 Desire low void & grain boundary LPS dense & highly amorphous

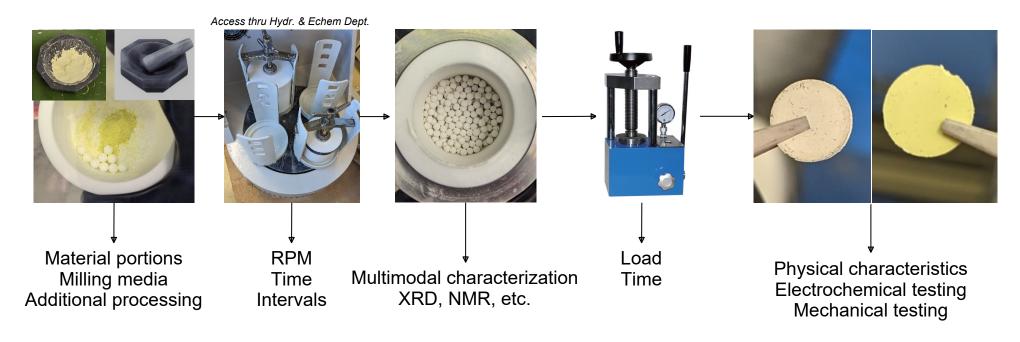
Benefits of dry ball milling

- Lessened overall energy cost on process
- Low temperature solution processing requires evaporating step of solvents (>100°C)


How do dry ball milling parameters impact different material characteristics?

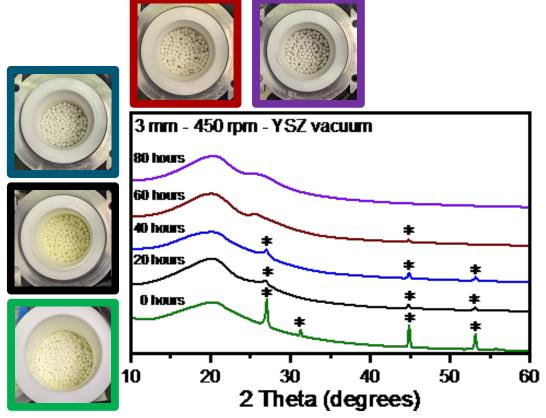
How does pellet crystallinity impact mechanical and electrochemical performance?

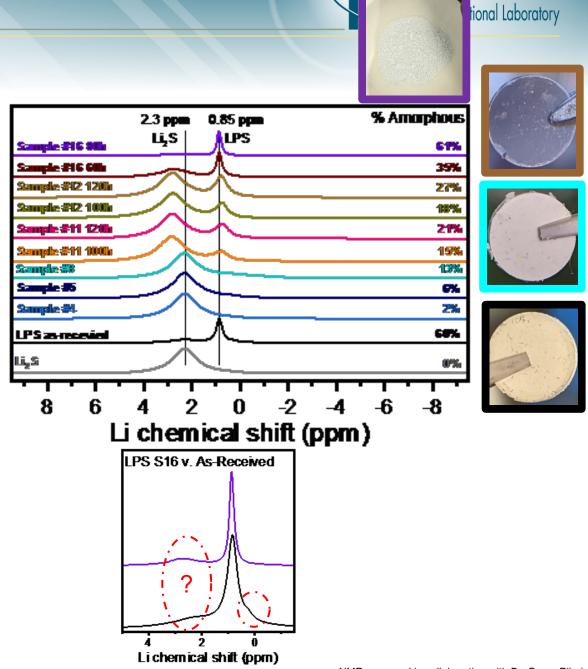
Literature Gaps


Methods publication in process for *ECS Journal of Solid State Science and Technology* to address literature inconsistencies.

x - not doc	Milling Media					Grinding Jar			Milling Details								
DOI	Year	mol ratio Li ₂ S:P ₂ S ₅	Total active mass (g)	Material	Size(s)	Appx. Mass (g)	Count	Media: active (g:g)	Material	Size (mL)	RPM	Time (hr)	Milling Interval	Hand Milling	Jar Cleaning	Amorphous vs. Crystalline	Notes on Water Prevention
10.1111/j.1151- 2916.2001.tb00685.x	2001	75:25	0.5-1	Alumina	10 mm	20	10	10-20	Alumina	45	370	20	Continuous	Y before	x	Amorphous	Milling in a glovebox
10.1016/j.elecom.200 9.07.028	2009	70-80% Li₂S	1	ZrO ₂	12 & 15 mm	15	1 each	×	ZrO ₂	vial (Spex)	×	20	Continuous	x	x	Glass	Milling in a glovebox
10.1016/j.elecom.200 9.07.028	2009	70-80% Li₂S	1	ZrO ₂	12 & 15 mm	15	1 each	×	ZrO ₂	vial (Spex)	x	20	30 min ON, 30 min OFF	x	x	Glass	Milling in a glovebox
10.1039/c0jm01090a	2011	80:20	x	ZrO ₂	5 mm	60	160	×	ZrO ₂	45	500	20	x	x	x	"Almost amorphous"	x
10.1016/j.ssi.2010.10 .013	2011	67-80% Li₂S	x	ZrO ₂	4 mm	120	500	×	ZrO ₂	45	510	8-24	x	x	x	Glass & glass- ceramic	Dry Ar atmosphere
10.1038/srep02261	2013	75:25	x	ZrO ₂	4 mm	120	500	×	ZrO ₂	45	510	10	x	Y before	x	Amorphous	Dry Ar atmosphere
10.1016/j.jpowsour.2 015.10.040	2015	75:25	1	ZrO ₂	4 mm	120	500	×	ZrO ₂	45	510	45	x	x	x	Unconfirmed	x
10.1038/nenergy.201 6.30	2016	77:23	x	x	x	×	×	×	×	×	×	120	x	x	x	Crystalline	Milling in a glovebox
10.1038/srep21302	2016	67-75% ⊔ ₂ S	x	ZrO ₂	10 mm	32	10	×	ZrO ₂	45	370	80	x	x	x	Mixture	Dry Ar atmosphere
10.1016/j.ssi.2015.11 .034	2016	70:30	x	ZrO ₂	3 mm	×	×	×	ZrO ₂	80	510	144	10 min ON, 20 min OFF	Y, every 8h	x		Milling in a glovebox
10.1039/c7ta06067j	2017	50-75% Li₂S	5	ZrO ₂	3 mm	110	×	22	ZrO ₂	45	510	100	5 min ON, 15 min OFF	x	x	Amorphous below 75mol% Li2S	Milling in a glovebox
10.1149/2.1831712je s	2017	75:25	x	ZrO ₂	4 mm	120	500	×	ZrO ₂	45	510	10	x	x	x	Glassy	x
10.1038/s41467-018- 04762-z	2018	77.5:22.5	x	×	×	×	x	×	Stainless Steel	500	×	20	×	x	x		x
10.1021/acs.jpcc.9b0 1425	2019	75:25	4	ZrO ₂	3 mm	8.5	×	25	ZrO ₂	45	510	117	5 min ON, 15 min OFF	x	x	Amorphous	Dry Ar atmosphere
10.1002/aenm.20210 1111	2021	75:25	×	ZrO₂	10 mm	36	12	×	ZrO ₂	×	510	20	15 min ON, 15 min OFF	Y before	x	Crystalline	Sealed with parafilm & tape
10.1039/d1ta02754a	2021	75:25	2-5.2	ZrO₂	5 or 10 mm	32-64	x	6-16	ZrO ₂	45	350-510	15-80	0-5 min OFF/hr	Varied	Varied	Amorphous	Screw-top clamp for sealing
10.1021/acsaem.0c02 771	2021	75:25	×	x	×	x	x	×	ZrO ₂	45	600	10	×	x	x		Milling in a glovebox
This work	22-23	75:25	2	YSZ	1.2-10 mm	20-70	varied	8-24	YSZ or Teflon	45-500	370-850	10-120	Varied	Varied	Varied	Commonly crystalline	Tape or screw- top clamp

Filling the Gaps

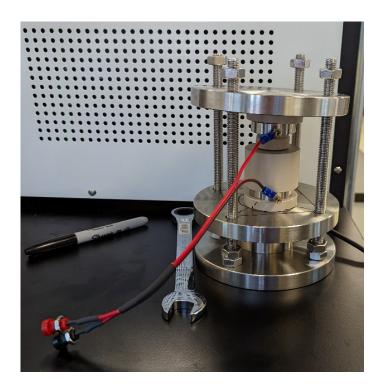

- Many preparation parameters affect the resulting SSE makeup
 - What's the best "recipe"?



Impacting factors: crystallinity, physical characteristics (color, pellet density, etc.), and e-chem capabilities

XRD & NMR

- XRD as a good go/no-go tool
- NMR for quantitative analysis



Cell-Level Testing

- PEEK Split Cell to run ionic conductivity tests & symmetric cell tests

 - Evaluate impacts of pressure
 Add modified interfaces (i.e., artificial SEIs) to lithium foil Lil & LiF

J. Lau...B.S. Dunn, Adv. Energy Mater. 8, 1800933 (2018).

"...two most promising methods for stabilizing the interface: the compositional tuning of sulfide solid electrolytes and the use of artificial SEIs"

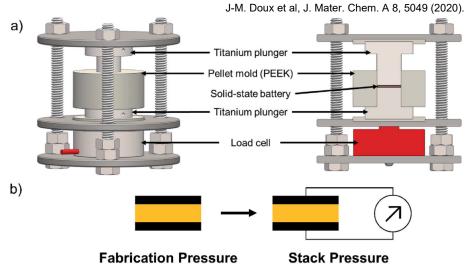
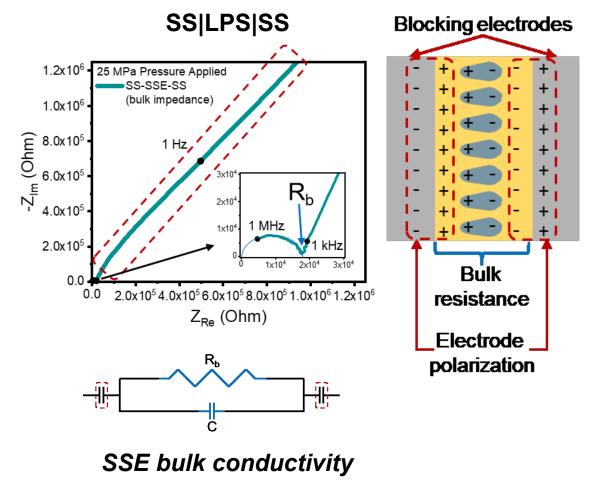
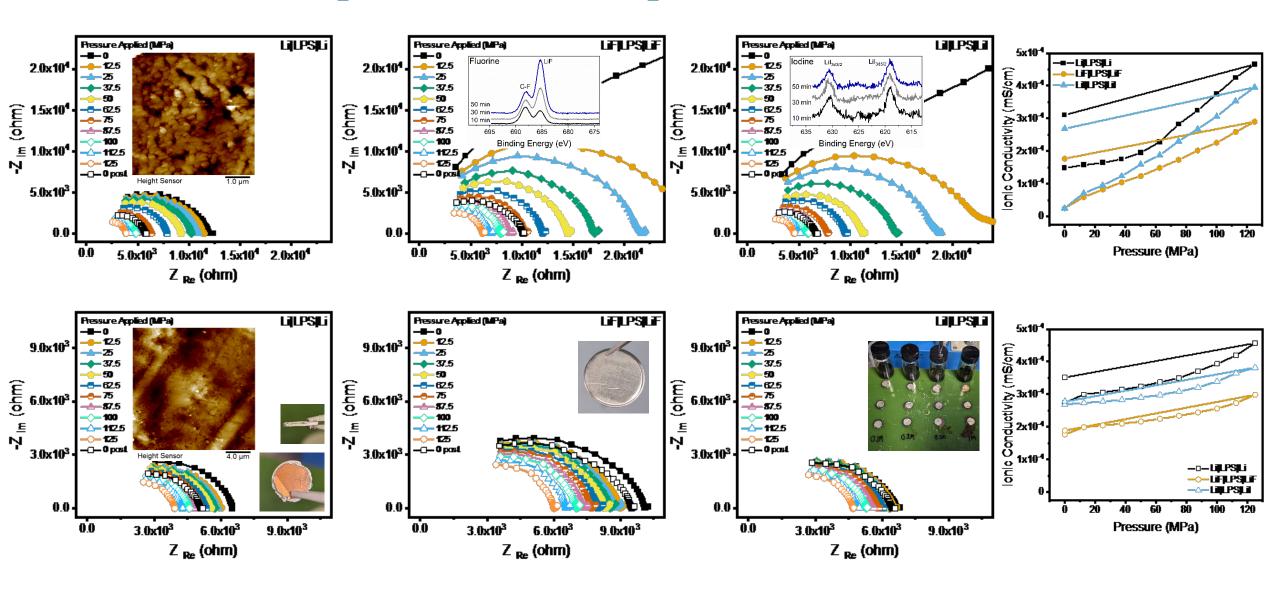



Fig. 1 (a) Design of the solid-state battery holder with a load cell to monitor the stack pressure applied to the battery during cycling and conductivity measurements. (b) For conductivity measurements and battery cycling, pellets are first prepared by applying uniaxial pressure as the fabrication pressure using a hydraulic press and are then cycled in the battery holder at the predetermined stack pressure.

Cell-Level Testing: EIS

- Ion-blocking vs. ion-conducting electrodes
 - Different characteristics to evaluate!



Li|LPS|Li Conducting electrodes 25 MPa Pressure Applied Li-SSE-Li (interface impedance) $1.0x10^3$ R3 (myO) E 4.0x10³ 5.0x10² 1 kHz 1 MHz 1.06x104 1.08x104 1.10x104 $4.0x10^3$ Bulk 0.0 resistance $4.0x10^{3}$ $8.0x10^{3}$ 1.2x104 Z_{Re} (Ohm) Interfacial impedance

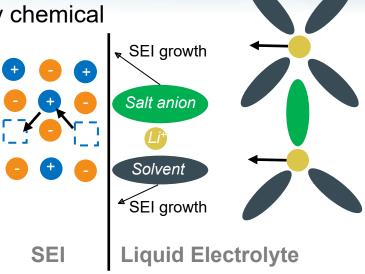
Interfacial charge transfer

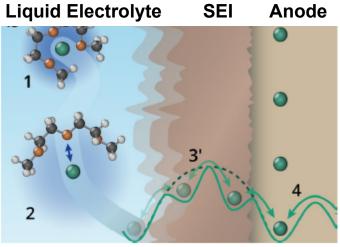
Cell-Level Testing: Artificial Coatings/SEIs

I wish to acknowledge the ancestral and unceded land of the Shoshone and Bannock peoples on which this research was conducted.

Other acknowledgments:

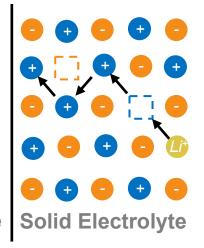
- LDRD funding under DOE Idaho Operations Office Contract DE-AC07-05ID14517
- The entire LDRD program office and support staff
- Coworkers (INL) Corey Pilgrim, Pete Barnes, Bor-Rong Chen, Bumjun Park, Boryann Liaw, Bin Li, Eric Dufek, Josh Gomez, Dong Ding, (Boise State) Paul Davis, Elton Graugnard, JD Hues, (CAES) Yu Lu, Jeremy Burgener

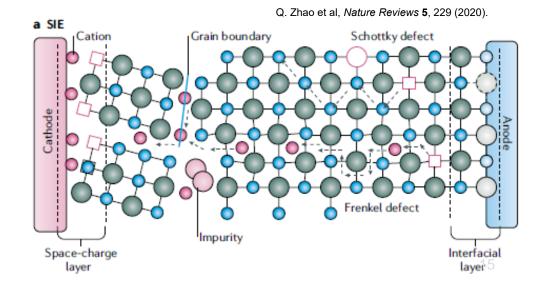

Questions?



<u>Liquid electrolytes</u> – transport driven by chemical

and electrochemical potential gradients

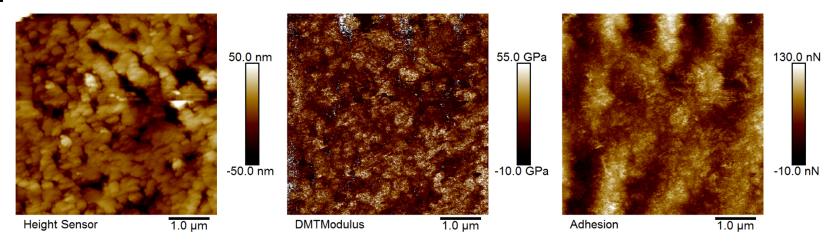




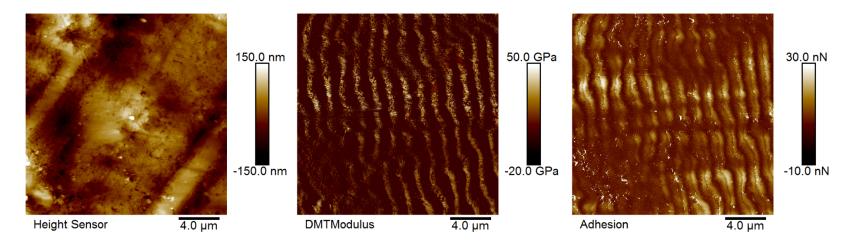
M. Weiss et al, Electrochemical Energy Reviews 3, 221 (2020).

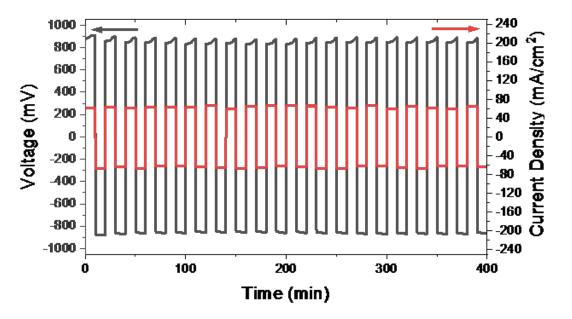
Solid electrolytes – transport driven by charge

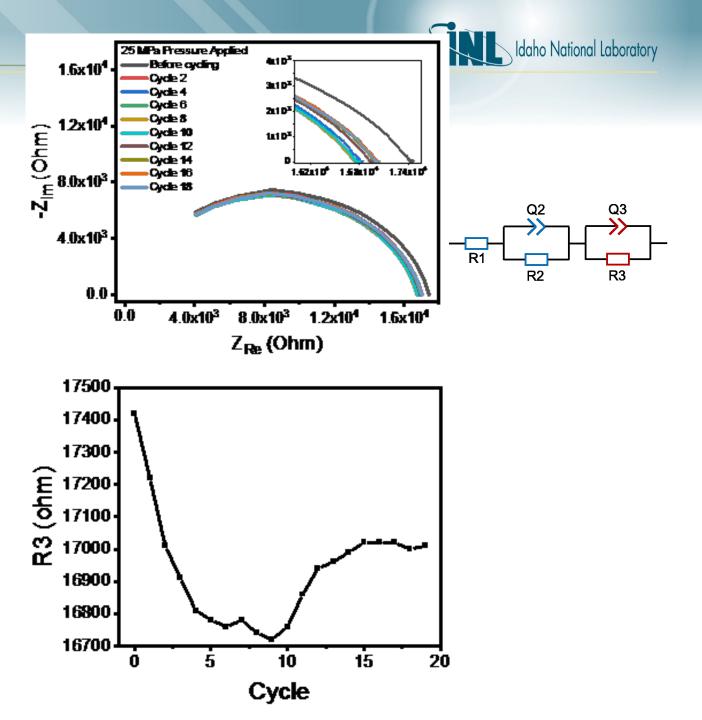
mobility and concentration



Electrode


Electrode


Post pelletization



Post 125MPa load

Cycle Testing – Li|LPS|Li

