
5th Canadian Conference on

Nuclear Waste Management,

Decommissioning

& Environmental Restoration

August 27 to 31, 2023 Sheraton Fallsview, Niagara Falls, Canada

Postdoctoral Research Associate, Irradiation Experiment Thermal Hydraulics Analysis, INL

Co-authors: Md. Shafiqul Islam (MIT) and Piyush Sabharwall (INL)

PARTITIONING AND TRANSMUTATION OF USED NUCLEAR FUEL IN SUPPORT OF GEOLOGICAL WASTE DISPOSAL

INL/CON-23-74286

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy

Objectives and Motivations

- Nuclear energy is a low-carbon technology that
 - · generates bulk baseload electricity, and
 - supports long-lasting eco-friendly sustainability goals.
- However, it still faces challenges, such as
 - securing and managing of long-lived nuclear actinides and fission products
 - —most notably the used fuel, which is considered high-level waste (HLW).
- Direct geological waste disposal would be the most economical option for HLW but requires
 - highly qualified sites whose geophysical behavior will remain stable for 10,000 years.
- Partitioning and transmutation (P&T) of used fuel
 - reduces radioactivity and decay heat generation,
 - enables efficient geological waste disposal.
- Therefore, research and development (R&D) are needed to foster successful implementation of P&T technologies.

Objectives and Motivations (cont'd)

- P&T is a promising strategy for treating SNF HLW
 - so as to decrease its waste volume and toxicity.
- Partitioning involves separating the radioactive elements
 - in spent fuel, including fission products and actinides,
 - via chemical procedures or sophisticated techniques
 - e.g., pyroprocessing or electrorefining.
- Transmutation alters the attributes of the waste
 - by turning long-lived radioactive elements into shorter-lived or nonradioactive elements
 - via nuclear reactions in fast neutron reactors or accelerator-driven subsystems (ADS), and fast reactors (FRs).

Objectives and Motivations (cont'd)

- Civil nuclear power production,
 - around 370,000 metric tons of heavy metal (MTHM) of spent fuel has been produced,
 - of which 120,000 MTHM has been reprocessed [1].
- The shut-down and operational nuclear power plants (NPPs)
 - at 35 state stored approximately 86,000 metric tons (MT) of commercial spent nuclear fuel (SNF) onsite
 - proposed sites for final disposal or interim storage
 - quantity of SNF is increasing at an annual rate of about 2,000 MT [2]

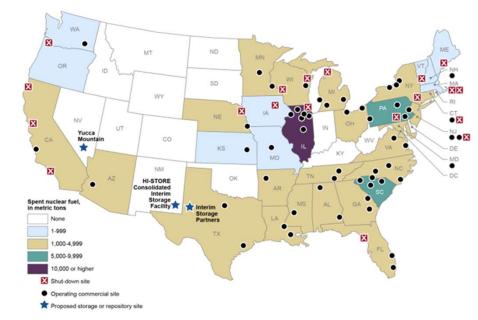


Fig. 1: Stored commercial SNF amounts (through 2019) and locations (as of June 2021) [2]

SNF: post-burnup material compositions

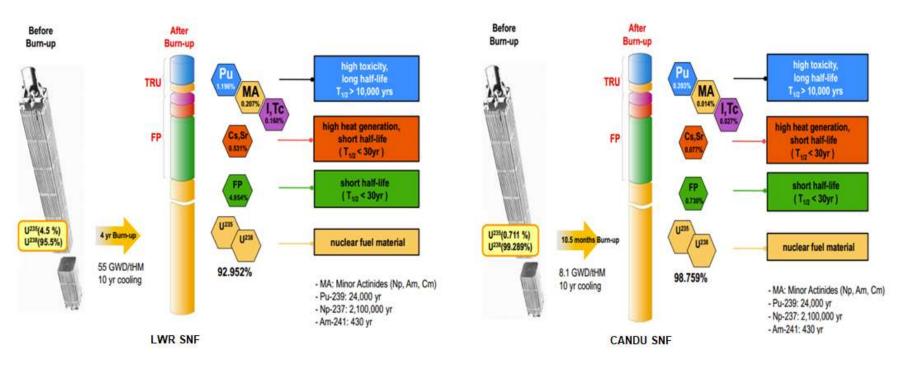


Fig. 2: Post-burnup material compositions of SNF [3]

SNF: management challenges

- Multiple recycling of plutonium (Pu) and minor actinides (MA) can
 - reduce the amount of time necessary to return radioactivity amounts back to their reference levels.
- Previous studies [3] demonstrated that P&T processes can, with 99% efficiency,
 - recycle Pu and MA so as to reach the reference levels in approximately 500 years.

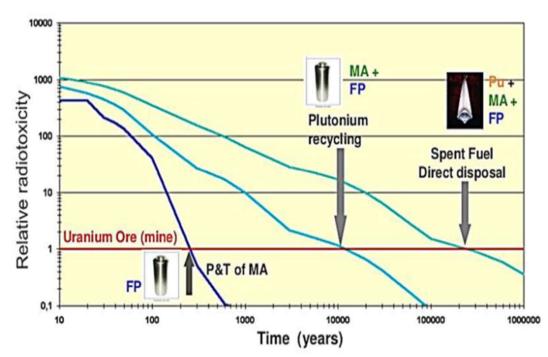


Fig. 3: Relative radiotoxicity levels vs. time when SNF is managed using either a direct disposal, recycling, or P&T strategy [4]

SNF: understanding the Needs

- Fission products determine the SNF's radiotoxicity
 - during the first 100 years after discharge.
- Once the plutonium is removed
 - the minor actinides determine the long-term radiotoxicity.
- It is important to note that both scales are logarithmic [5].
- Major and minor actinides impacts on
 - storage facilities and heat generation.

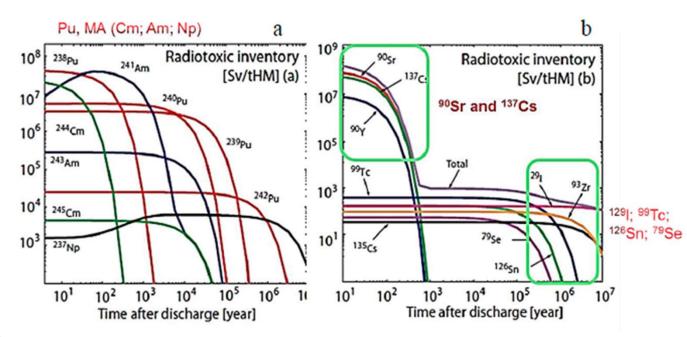


Fig. 4: Relative radiotoxicity of different components of SNF, varying over time [5]

SNF: radioisotope impacts on storage

- Radiotoxicity impact
 - ⁷⁹Sr, ¹³⁵Cs, and ¹⁵¹Sm;
- Repository impact
 - ¹²⁶Sn, ⁷⁹Se, ¹³⁵Cs,
 ²⁴¹Am, and ²³⁷Np; and
- Heat generation impact
 - ²³⁸Pu, ²⁴⁴Cm, and
 ²⁴¹Am.

Isotope		Isotope			
	Toxicity	Half-life	Repository Impact	Inventory	Separation Requirement
⁹⁴ Nb	High	High	Low	Very low	Weak
⁹⁹ Tc	Medium	High	High	High	No
¹⁰⁷ Pd	Low	High	Low	Medium	Strong
¹²⁹	Medium	High	Very high	Medium	Weak
¹³⁵ Cs	Medium	High	Medium	Medium	Strong
¹⁵¹ Sm	High	Low	Low	Low	Weak

Table 1: Transmutation needs and isotope separation requirements of transmutable long-lived fission products [5]

Partitioning Methods: overview

- Partitioning separates different constituents
 - mainly Pu and MA (Np, Am, and Cm) for treatment, disposal, and recycling.
- Two types:
 - dry: Plutonium Uranium Redox Extraction (PUREX), separation efficiency (~99.9%)
 - fuel dissolution, chemical treatment and separation, off-gas treatment, and waste verification [6].
 - wet: primarily pyroprocess with three steps [7]
 - oxide reduction of light-water reactor (LWR) fuel and transuranic recovery using electrorefining,
 - actinide removal using an ion exchanger and fuel, and
 - solid waste fabrication.

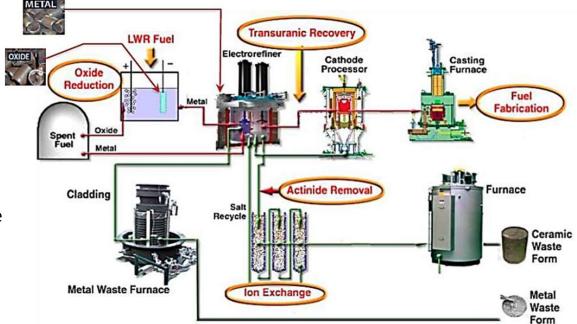


Fig. 5: Schematic diagram of the conceptual design for the advanced pyroprocess [6].

Partitioning Methods: comparison

	Aqueous Method	Pyrochemical Method
Solution	Aqueous	Ionic liquid
Operating temperature	Low	High
Process	Continuous	Batch
Product purity	High	Low
Waste type	LLW	HLW
Waste volume	Large	Small
Proliferation resistance	No, but safeguardable	Yes
Compactness	No	Yes
Scale-up	Commercial	Engineering (PRIDE, ANL, INL)

Table 2: Aqueous vs. pyrochemical process for waste partitioning [6]

Transmutation Methods: comparison

- Fast reactor (FR)
 - Molten salt fast reactor (MSR),
 - Sodium-cooled fast reactor (SFR), and
 - Lead-cooled fast reactor (LFR)

	MSR	SFR	LFR
FT	99.85 %	99.78%	99.71 %
Radiotoxicity	1	1.19	1.53
Decay heat	1	1.11	1.46
Neutron emission	1	0.043	0.039
Np and precursors	1	1.19	1.5

Table 3: Fractional transmutation performance in different first FR types [8]

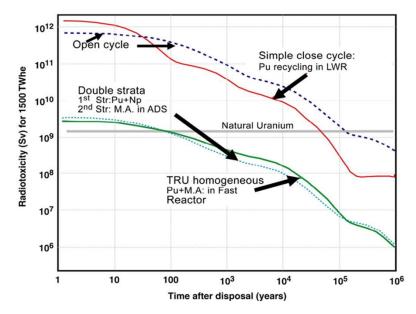


Fig. 6: Radiotoxicity reductions achieved via different strategies [3]

Transmutation Methods: comparison (cont'd)

- ADS is a subcritical reactor system that
 - uses thorium as fuel
 - uses high-energy proton beam from an external proton accelerator makes the reactor core critical,
 - ensures more efficient burning of SNF.
- ADS and FR systems
 - burns the minor actinides (MA) and Pu,
 - whereas thermal reactor systems produce them.

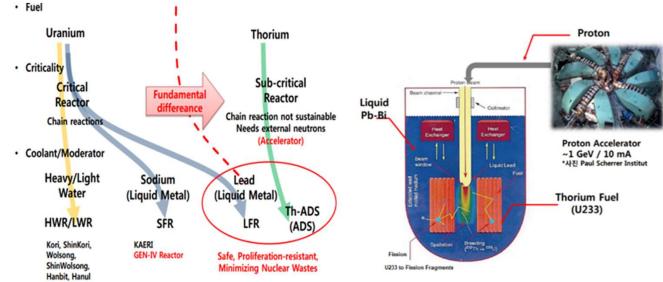


Fig. 7: Accelerator driven reactor system (ADS) [9]

Transmutation Methods: comparison (cont'd)

 Compared to the conventional FRs system, the burnup of the MA when using ADS is much higher.

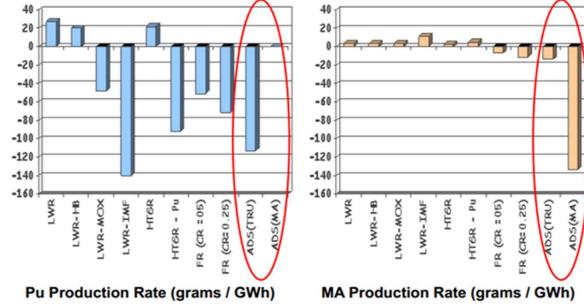


Fig. 8: Transmutation performance comparison between fission reactors and ADS [9].

P&T: repository drift loading

- Separation of Pu, Am, Cs, Sr, and Cm will allow for denser loading of treated waste in the repository
 - Radiotoxicity reflects the hazard level of the source materials
 - TRU dominates after about 100 years; however, fission products dominates in radiotoxicity after 100 years.
 - Cs/Sr (and decay products), Cm, and Pu dominate "early" decay heat; whereas Am dominates "later" decay heat
 - Separation of Pu and Am allows for denser loading of the repository
 - up to a factor of 6 with 99.9% removal.
 - Subsequent separation of Cs and Sr provides a much greater benefit
 - up to a factor of 50 with 99.9% removal.
 - Removal of Cm further increases the potential benefit (with Pu and Am)
 - greater than a factor of 100 with 99.9% removal.

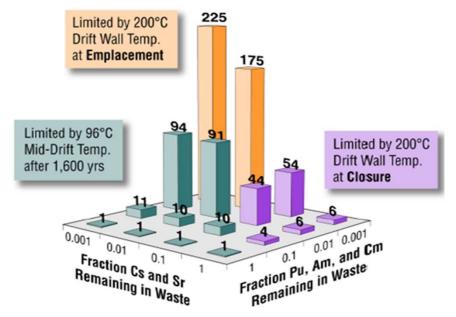


Fig. 9: SNF final repository/disposal site performances [10]

Summary: findings and conclusions

- The separation and recycling of Pu are already common practices in the industry
- Partitioning of MA has also been demonstrated in the lab and on a pilot scale
 - Therefore, partitioning Pu and MA is recommended in advanced pyroprocessing so as to reduce the amount of waste produced during wet separation
 - Partitioned HLW should be transmuted.
- ADS system is preferred over an FR system for transmutation
- P&T reduce the
 - long-term radiotoxicity of waste and
 - reach the level of the original uranium ore in less than 1000 years, as compared to the 100,000 years when P&T is not applied.
 - heat generation—something that is crucial for geological storage
 - amount of area required for the repository
 - e.g., transmuting MA and partitioning fission products can reduce the repository size by a factor of 4 to 5.
- However, P&T is a complicated procedure that demands significant R&D, supportive regulations, and advanced technologies and facilities that are yet to be fully developed or commercialized.

References

- 1. C. Greene, "An Overview of Spent Fuel Storage in the United States," US Consulting Company, LLC, January 23, 2018.
- 2. GAO analysis of data from Gutherman Technical Services, LLC, the Department of Energy, and the Nuclear Regulatory Commission; Map Resources (map). GAO-21-603, https://www.gao.gov/assets/gao-21-603.pdf
- 3. Salvatores, M., & Palmiotti, G. (2011). Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Progress in Particle and Nuclear Physics, 66(1), 144-166.
- 4. S. Bourg, A. Geist, J. Narbutt, (2015). SACSESS—the EURATOM FP7 project on actinide separation from spent nuclear fuels. Nukleonika, 60(4), 809-814.
- 5. W.S. Yang, Y. Kim, R.N. Hill, T.A. Taiwo, H.S. Khalil. "Long-lived fission product transmutation studies," Nuclear science and engineering, 2004,146(3), pp.291-318.
- 6. S. Phongikaroon, "Introduction to Pyroprocessing Technology for Used Nuclear Fuel," Department of Mechanical and Nuclear Engineering, Virginia, Commonwealth University. https://www.icln.org/default/assets/File/Intro%20to%20Pyroprocessing.pdf.
- 7. Pyroprocessing Technologies: Recycling Used Nuclear Fuel for a Sustainable Energy Future, ANL, www.cse.anl.gov/pdfs/pyroprocessing brochure.pdf
- 8. B. Becker, M. Fratoni, E. Greenspan. Transmutation Performance of Molten Salt versus Solid Fuel Reactors. In Proc. 15th International Conference on Nuclear Engineering, ICONE15, 2007, (pp. 22-26).
- 9. S. W. Hong, Lecture Materials, Th-based Accelerator Driven Subcritical Reactor, Sung Kyun Kwan University, ROK.
- 10. R. Hill, Transmutation, Argonne National Laboratory, Advanced Reactor Concepts, NRC Seminar Series, December 8, 2010. http://pbadupws.nrc.gov/docs/ML1101/ML110120261.pdf

Acknowledgment

The authors thank the Irradiation Experiment and Thermal Hydraulics department at INL for their support in completing this task.

Thank you for your attention!

