

Diagnostics and Strategic Plan for Advancing the SAPHIRE Engine

August 2023

Egemen Mutlu Aras, Stephen Ted Wood, Asmaa Salem Amin Aly Farag, Jordan Thomas Boyce

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Diagnostics and Strategic Plan for Advancing the SAPHIRE Engine

Egemen Mutlu Aras, Stephen Ted Wood, Asmaa Salem Amin Aly Farag, Jordan Thomas Boyce

August 2023

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

August 23, 2023

Egemen M. Aras, Stephen T. Wood, Asmaa S. Farag, Jordan T. Boyce

Reliability, Risk and Resilience Sciences (R3S)

Diagnostics and Strategic Plan for Advancing the SAPHIRE Engine

Benchmarking, Performance Analysis, and Upgrading the SAPHIRE Engine

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof

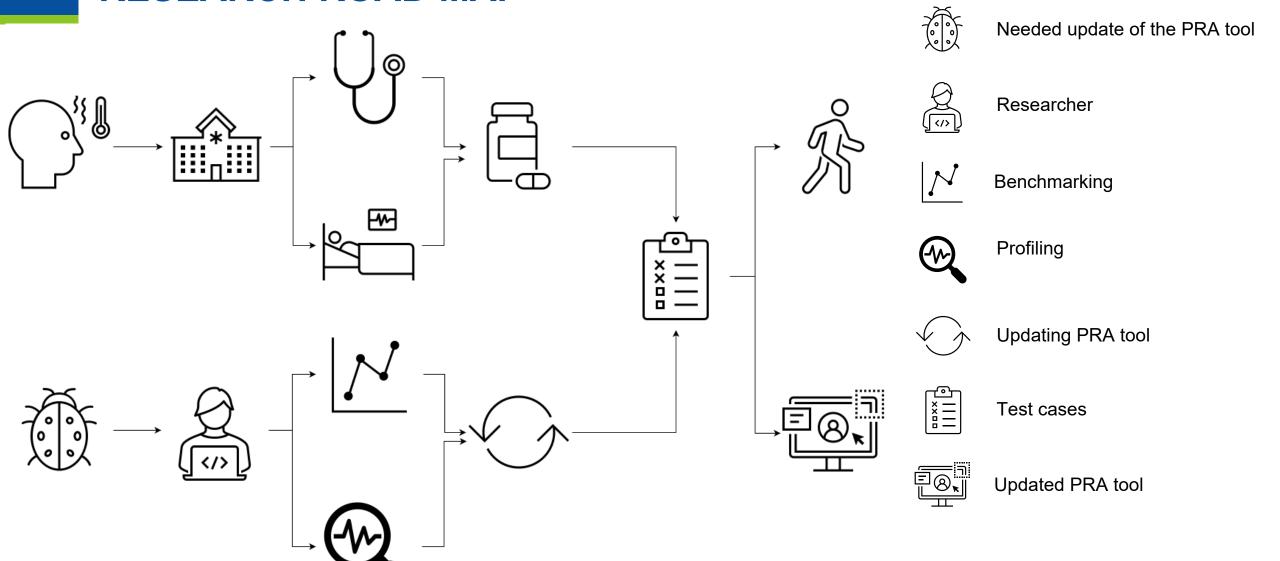
CONTENT

MOTIVATION

├テ**FACTS**:

- PRA applications exhibit high computational demands.
- △ Many PRA tools, including SAPHIRE, were developed during the 1980s and 1990s.
- While SAPHIRE has undergone numerous enhancements, a comprehensive analysis of its quantification engine is still pending.

✓ NEEDS:

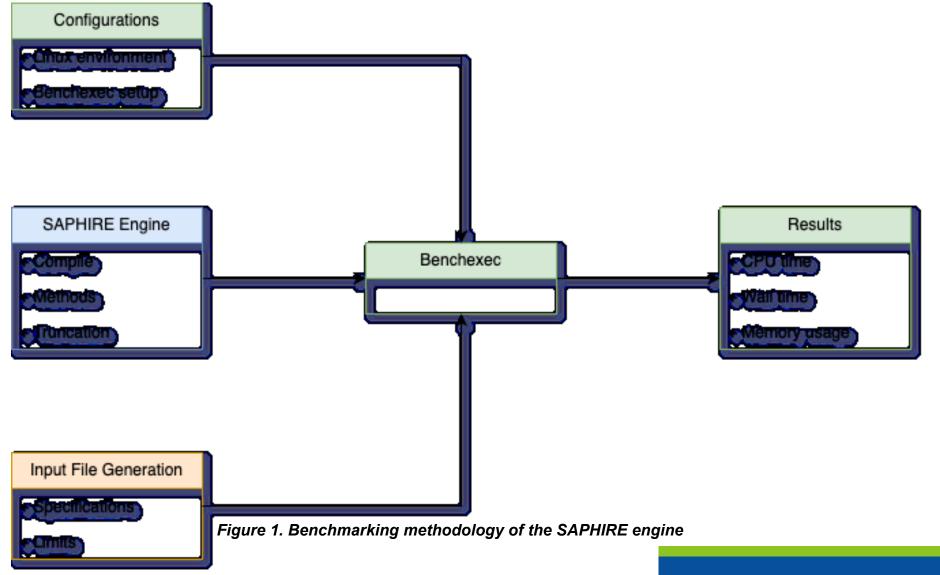

- Integration with Modern Technologies:
 - Optimize SAPHIRE for parallel and distributed computing.
- **△** Enhanced Efficiency:
 - Accelerate evaluations, minimizing memory usage.
- - Seamlessly integrate multi-hazard models into traditional ones.
- Seamless Model Exchange:
 - Enable smooth model exchange between SAPHIRE and other tools.

SOLUTION:

/→ RESEARCH ROAD MAP:

See next slide!

RESEARCH ROAD MAP


SAPHIRE

Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE):

- SAPHIRE is the successor of Integrated Reliability and Risk Analysis System (IRRAS) for reliability assessment.
- ☐ IRRAS was a comprehensive tool for risk assessment.
- ☐ IRRAS released its first version in February 1987.
- The latest version of the SAPHIRE is 8.2.8.0.

BENCHMARKING

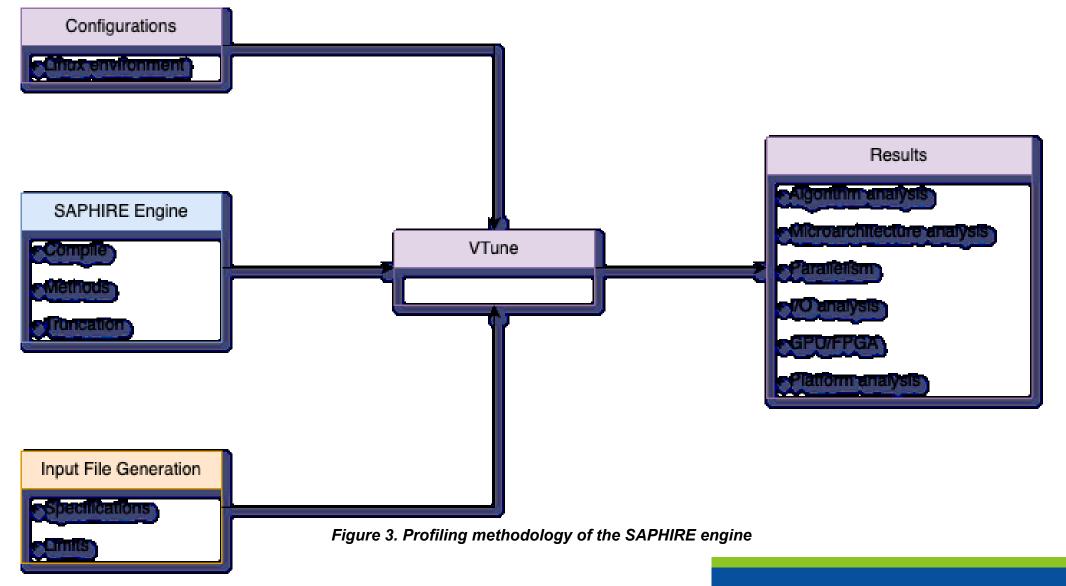

BENCHMARKING

Table 1. Generated fault tree arguments

#	Argument	Options	Analyzed
1	Name for fault tree	ft-name	Autogenerated
2	Name for the root gate	root	Root
3	Seed for PRNG	seed	123
4	# of basic events	-b or –num-basic	100:50:5000
5	Avg.# of gate arguments	-a or –num-args	3.0
6	Weights for [AND, OR, K/N, NOT, XOR] gates	weights-g	[1,1,1,0,0]
7	Avg. %% of common basic events per gate	common-b	0.3
8	Avg. %% of common gates per gate	common-g	0.1
9	Avg.# of parents for common basic events	parents-b	2
10	Avg. # of parents for common basic events	parents-g	2
11	# of gates (discards parents -b/g and common-b/g	-g or –num-gate	0
12	Maximum probability for basic events	max-prob	0.05
13	Minimum probability for basic events	min-prob	0.01
14	# of house events	num-house	0
15	# of ccf groups	num-ccf	0
16	A file to write the fault tree	-o or –out	ft-####.JSInp
17	Apply the Aralia format to the output	aralia	-
18	Nest NOT connectives in Boolean formulae	nest	_

Figure 2. BENCHEXEC configuration file for SAPHIRE

PROFILING

PROFILING

Preparing SAPHIRE for Profiling:

Compiled in release mode with debug information.

map2pd is used to transform the MAP files generated by Delphi compilers into Microsoft PDB files

Fault tree with parameters from Table 1.

UPGRADE

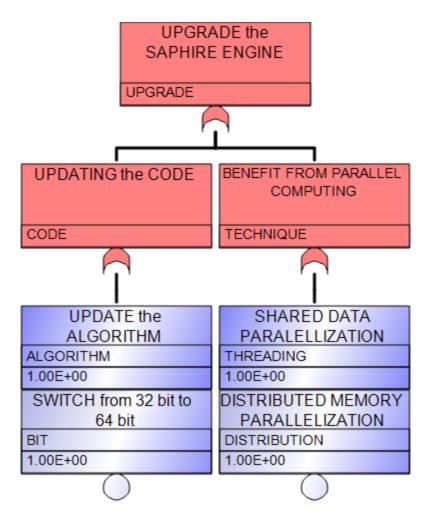


Figure 4. Success Tree (optimizing methodology) for Upgrading the SAPHIRE engine

RESULTS - BENCHMARKING

Table 2. Benchmarking results for the given probability truncations

#	Number of Basic Events	Truncation Probability of e-14	Truncation Probability of e-20	SCRAM Results w/o Probability Truncation	Parameter
		1800	1800	187	CPU Time [sec]
2	4850	51.8	48.8	8,890	Memory Usage [MB]
	4000	-	-	10,814,607	Number of Cutsets
		-	-	3.1094 x10 ⁻¹¹	Probability
		1.05	0.98	2.10	CPU Time [sec]
		52.1	48.9	48.2	Memory Usage [MB]
4	5000	4	74	734	Number of Cutsets
		6.6724 x10 ⁻¹⁴	8.3155x10 ⁻⁴	8.3155x10 ⁻⁴	Probability

♪ Observations :

- Linux version struggles with time limit for certain cases.
- Engine excels in assessing most fault trees except large ones.
- Efficient memory management with consumption under 50 MB.
- SCRAM inclusion allows comparison for SAPHIRE upgrades.

RESULTS - PROFILING

Table 3. Profiling results for the given probability truncations

#	Truncation Size	CPU Time [sec]	Number of Cutsets / Probability	SCRAM Number of Cutsets / Probability
2	18	3,828.795	102,444	-
			1.3388 x10 ⁻¹¹	

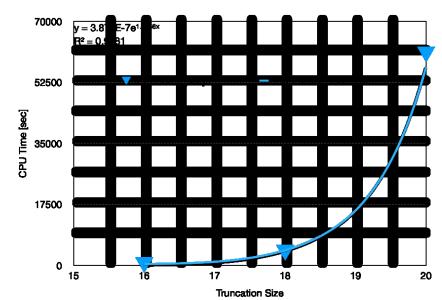


Figure 4. Trendline estimation for the CPU time for different truncation size

Table 4. Top hot spots in the code of the SAPHIRE engine

Truncation Size	FUNCTION		Percentage of CPU Time [%]
	InternalSetIntersectionEmpty	52.284	14.7
		1.0.10.100	40.0
40	InternalSetIntersectionEmpty	1,648.130	43.0
18	\A/ :(E:1	000 007	<i></i>
	WriteFile	209.027	5.5
	InternalSetAssignComplement	3929.234	6.5

RESULTS - UPGRADE

Table 5. Gain by achieved by upgrading from 32 bit to 64 bit for SetLib module of the SAPHIRE engine

#	Truncation Size	SetLib-32bit [sec]	SetLib-64bit [sec]	Percentage Enhancement [%]
2	16	259.35	179.03	31
4	18	4,497.45	2,963.55	34
6	20	82,783.48	56,220.37	32

On average: 29%

CONCLUSION & FUTURE WORK

- Diagnostics and strategic plan for advancing the SAPHIRE engine is accomplished.
- The strategy is applicable to any PRA tool with a minimum effort.
- r Limitations are determined.
- Bottle necks in the code are identified.
- 29% speed up is already gained.

/→ What we will do:

- Parallel computing and algorithm update if necessary and if possible.
- Benchmarking environment transition to Windows environment.
- Examine other quantification algorithms.
- Incorporate common cause failures (CCF).
- ✓ Validate our findings on real models.

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy. INL is the nation's center for nuclear energy research and development, and also performs research in each of DOE's strategic goal areas: energy, national security, science and the environment.