Performance Prediction of Irradiated TREAT Fuel

Adam X Zabriskie, Sebastian Schunert, Javier Ortensi, Daniel Schwen, Daniel M Wachs

October 2018

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

Performance Prediction of Irradiated TREAT Fuel

Adam X Zabriskie, Sebastian Schunert, Javier Ortensi, Daniel Schwen, Daniel M Wachs

October 2018

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Performance Prediction of Irradiated TREAT Fuel

Oregon State UNIVERSITY

A. Zabriskie^a, S. Schunert^b, J. Ortensi^b, D. Schwen^b, D. Wachs^b
^a Oregon State University, Corvallis, OR 97331 ^b Idaho National Laboratory, Idaho Falls, ID 83415

How Irradiation Affects TREAT Pulses

- TREAT microscopic fuel consists of UO₂ particles surrounded by a graphite matrix
- Fission fragments produced in the periphery of the particle travel into the graphite causing irradiation damage
- Fission fragment irradiation layer develops around particle over time

- Irradiation damaged graphite has reduced thermal properties: 41.8 W/mK saturates at 1.046 W/mK ⁽¹⁾
- Acts as serial thermal resistor increasing the temperature of the particle during pulses
- Some fission energy ballistically transported by fission fragments leaving the particle
- Particle size influences irradiation damage layer

Calculating Displacements per Atom (dpa)

- Magpie polynomial fits provide:
- Ballistic transport fission energy deposition distribution
- Graphite dpa distribution away from particle for single EOS pulse⁽¹⁾
- Magpie tracking of oxygen interstitials
- Reducing particle radius increases number of particles in TREAT fuel reducing local particle fission events

Simulating Pulses with Varying Damage

- MAMMOTH couples heat conduction solution with results from Magpie
- Compare temperature difference of particle to graphite (a.k.a. time lag)
- Requires graphite dpa reduction of thermal conductivity correlation from <200 °C experiments⁽³⁾
- Normalized for TREAT graphite data⁽¹⁾

Correlation of dpa to Thermal Conductivity Degradation

☐ Take into account graphite annealing during pulse

☐ Include effect on feedback through multi-physics coupling

MAMMOTH

- Single EOS pulse produces 2.6 GJ⁽³⁾
- TREAT operated 35 years before shutdown producing 2,600 GJ⁽³⁾
- Assume every pulse is a 2.6 GJ TREAT EOS pulse
- Assume all particles are a single size
- TREAT operates with reduced thermal properties from irradiation damage

Two 20 µm Radius MAMMOTH Results

Conclusions

(1) K. Mo, et al., "Heat transfer simulations of the UO₂ particle-graphite system in TREAT fuel," Nucl. Eng. Des., 293, Supplement C, 313 (2015)

- ➤ Larger particles receive more irradiation damage than smaller particles
- Fissions per particle increase by r³ as particle size increases
- > Graphite damage increases by r^{-1.237} as particle size decreases
- > Temperature difference is larger in larger particles
- > Temperature differences increases with irradiation damage over time
- > Larger particles experience larger increases in peak particle temperatures

Future Work

☐ Improve correlation between fission fragment damage and degraded thermal properties of graphite