

Failure Modes and Effects Analysis of Biorefinery Pathways

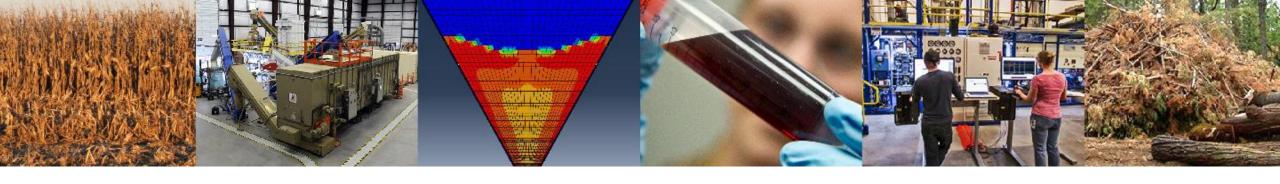
November 2023

Rachel M Emerson, Nepu Saha, Jordan Lee Klinger, Tiasha Bhattacharjee, Danny Carpenter, Steven Phillips, Lorenzo J Vega Montoto, Pralhad Hanumant Burli

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Failure Modes and Effects Analysis of Biorefinery Pathways


Rachel M Emerson, Nepu Saha, Jordan Lee Klinger, Tiasha Bhattacharjee, Danny Carpenter, Steven Phillips, Lorenzo J Vega Montoto, Pralhad Hanumant Burli

November 2023

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

2023 AIChE Annual Meeting

Feedstock Conversion Interface Consortium: Understanding Feedstock Variability to Enable Next Generation Biorefineries

November 6, 2023

Failure Modes and Effects Analysis of Biorefinery Pathways

fcic

U.S. DEPARTMENT OF ENERGY

Rachel Emerson

Acknowledgement

Co-Authors and Subject Matter Experts

Nepu Saha Idaho National Laboratory

Jordan Klinger Idaho National Laboratory

Tiasha Bhattacharjee Idaho National Laboratory

Danny Carpenter National Renewable Energy Laboratory

Steven Phillips Pacific Northwest National Laboratory

Lorenzo Vega-Montoto Idaho National Laboratory

Pralhad Burli Idaho National Laboratory

Funding

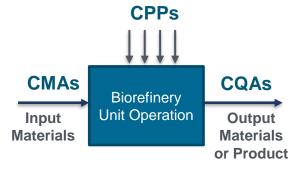
This research was supported by the U.S. Department of Energy under Department of Energy Idaho Operations Office Contract No. DE-AC07-05ID14517.

Risk: Variability in Biomass Properties

Variability in biomass feedstock properties translates to **risk** for bio-projects

- Shutting down of existing biorefineries
- High capital costs for emerging bio-projects

Variability in critical material attributes


Technical Risk

- Equipment failure
- Inconsistent product quality
- Environmental consequences
- Safety

Quality by Design

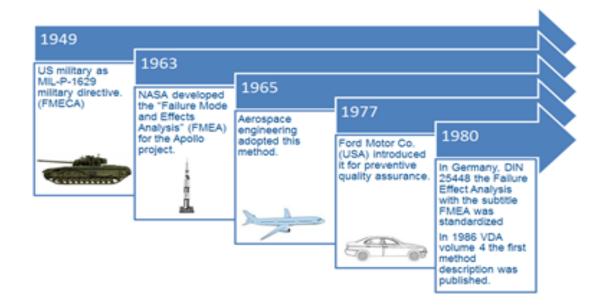
Emphasis on systematic understanding of processes and control

Example: Jet Fuel Production

CMA: lignin content, H₂ content

CPP: process design & operation

CQA: Aromatic content < 25%



Process Risk Assessment

FMEA Background

Benefits Failure Mode and Effects Analysis (FMEA)

- Well-accepted risk assessment tool
- Combining qualitative and quantitative data
- Easily adaptable
- Couples well with Quality-by-Design approaches

Overview

- Extensive interviews with subject matter experts (SMEs)
- Systematic semi-quantitative analysis based on failure identification for a given operation or system of operations for a process
- Failure defined as "not performing or producing as intended".

Ranking of **Severity** (S), **Occurrence** (O) and **Detection** (D) by Subject Matter Experts to calculate **Risk Priority Number** (RPN).

$$RPN = S \times O \times D = Risk \times D$$

Semi-quantitative criticality value for each identified CMA, CPP, CQA for given material/unit operation/system configuration

Systematic Data Collection

FMEA Interview Form Date: Interviewee: Interviewer: Which unit operation should we focus on? What is the primary purpose of this unit operation? Should this be considered one unit operation? Can you briefly describe how it works? parameters/process What scale is the target unit operation intended for lab - >0.5 DTPD pre pilot – 0.5 DTPD pilot – 1 DTPD demonstration – 50 DTPD commercial ->50DTPD What scale do we usually Interviewee Follow-up Questions Interviewer How often are we running

Information Collected - Background

- Equipment scales
- Operation duration
- Level of expertise for combinations of equipment/material/product (system)
- Establish primary scope (e.g., material, system configuration)

Systematic Data Collection

FMEA Interview Form Information Collected - Failures Date: Impacts (process, quality, cost, sustainability) Interviewee: Interviewer: Which unit operation should we focus on? CQAs – Critical Quality Attributes What is the primary purpose of this unit operation? • Severity (1-10) Should this be considered one unit operation? Causes CMAs – Critical material attributes Can you briefly describe how it works? parameters/process CPPs – Critical process parameters • Occurrence (1-10) What scale is the target unit operation intended for lab - >0.5 DTPD **Detection and Controls** pre pilot – 0.5 DTPD pilot – 1 DTPD Detection Rank (1-10) demonstration – 50 DTPD commercial ->50DTPD What scale do we usually Interviewee Follow-up Questions Interviewer How often are we running Unit Operation/Equipment Input format (approx) Output format (approx) System Design (Product) Nameplate Capacity TRL (A-C) Potententia Failure/CQA impacts: What is the impact on the What causes the step. Identified CPP What CQAs are impacted Process efficiency (Proc), Identified CMA (and ranges if What is the process step, change In what ways could the step, change or feature to go customer if this failure is associated What controls exist that eithe directly or indirectly by this Product quality (Prod), known) associated with or feature under investigation? change or feature go wrong? not prevented or wrong? (how could it vith failure an prevent or detect the failure? Economics (Eco), failure and cause occur?) cause

Sustainability (LCA)

Guidance Scales

Severity

Effect	Rank	Criteria
Minor	1	None to minor disruption to production line. A small portion (< 5%) of product may have to be reworked online.
		Low disruption to production line. A portion (< 15%) of product may have to be reworked online. Process up.
Low	3	Minor annoyance exists.
		Moderate disruption to production line. A small portion (>20%) of product may have to be reworked online.
Moderate	6	Process up. Some inconvenience exists.
		High disruption to production line. A portion (>30%) of product may have to be scrapped. Process may be
High	8	stopped. Customer dissatisfied.
		Major disruption to production line. Close to 100% of product may have to be scrapped. Process unreliable.
Very high	10	Failure occurs without warning. Customer very dissatisfied. May endanger operator and/or equipment.

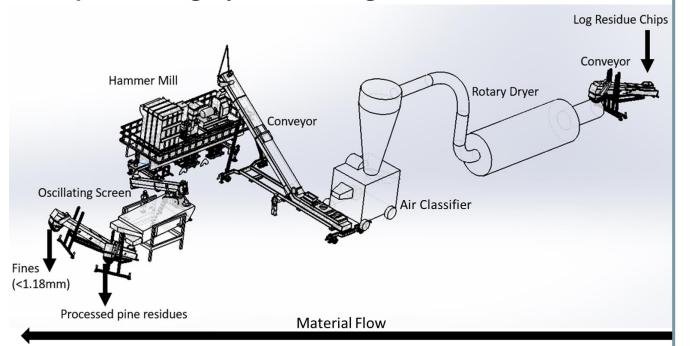
Occurrence

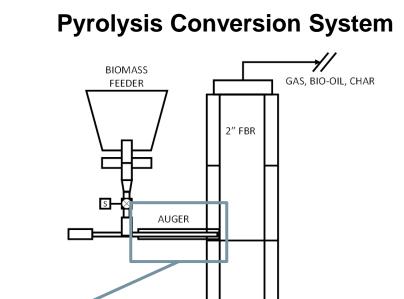
Occurrence	Rank	Criteria
		Failure is very unlikely. No failures
Remote	1	associated with similar processes.
		Few failures. Isolated failures associated
Low	3	with similar processes.
		Occasional failures associated with similar
Moderate	6	processes.
		Repeated failures. Similar processes have
High	8	often failed
Very high	10	Process failure is almost inevitable.

Detection

Detection	Rank	Criteria
		Process control will almost certainly detect or prevent the potential cause
Almost certain	1	of subsequent failure mode.
		High chance the process control will detect or prevent the potential cause
High	3	of subsequent failure mode.
		Moderate chance the process control will detect or prevent the potential
Moderate	6	cause of subsequent failure mode.
		Remote chance the process control will detect or prevent the potential
Remote	8	cause of subsequent failure mode.
		There is no process control. Control will not or cannot detect the potential
Very uncertain	10	cause of subsequent failure mode.

Systematic Data Collection


FMEA Interview Form Information Collected - Mitigation Date: Interviewee: What can be done to Interviewer: Which unit operation should we focus on? Reduce severity What is the primary purpose of this unit operation? Decrease occurrence Improve detection Should this be considered one unit operation? Categorize as Can you briefly describe how it works? parameters/process Idea Proposed scope What scale is the target unit operation intended for lab - >0.5 DTPD In-Process pre pilot – 0.5 DTPD pilot – 1 DTPD Implemented demonstration – 50 DTPD commercial ->50DTPD What scale do we usuall Interviewee Follow-up Questions Interviewer How often are we running Unit Operation/Equipment Input format (approx) Output format (approx) System Design (Product) Nameplate Capacity TRL (A-C) Potententia Failure/CQA impacts: What is the impact on the What causes the step. Identified CPP What CQAs are impacted Process efficiency (Proc), Identified CMA (and ranges if change or feature to go What is the process step, change In what ways could the step, What controls exist that either customer if this failure is associated directly or indirectly by this Product quality (Prod), known) associated with or feature under investigation? prevent or detect the failure? change or feature go wrong? not prevented or wrong? (how could it vith failure an Economics (Eco), failure and cause occur?) cause Sustainability (LCA)


FMEA Implementation: Pyrolysis Conversion Pine Residues

Preprocessing System Configuration – Pine Residue

- FMEA performed on theoretical system-wide
- FMEA on each individual unit operation

FMEA performed on one problematic unit operation

NITROGEN

Screw

Feeder

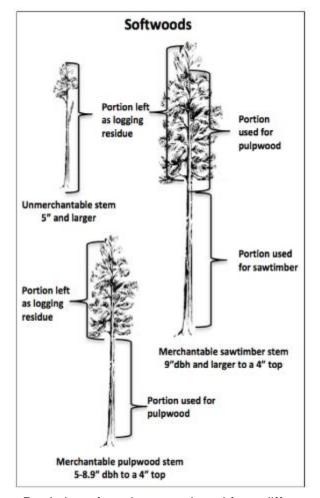
Experimental results for identified failures

Saha, N. et al. *Fuel Processing Technology* 245 (2023): 107725. https://doi.org/10.1016/j.fuproc.2023.107725

High Temperature Screw Feeder FMEA

Failure	Impacts	CQAs	SEVERITY	Causes	CMAs	CPPs	OCCURRENCE	Detection methods	DETECTION	RPN
Feed system plug	 Complete Shutdown Downtime Potential equipment damage Product quality 	ThroughputBiomass feedrateProduct quality	10	 Sudden and severe build-up of material: Particle agglomeration and compaction In-feed and out-feed inconsistencies Reactions between properties and heated auger Auger properties 	 Particle size and distributions Moisture (<10%; >25-30%) Particle surface Compaction Particle density 	Auger geometryTemperature profileAuger speed	1	Visual observations by trained operator of differential pressure and motor current		100
Char buildup on auger	Reduction in throughput Potential shutdown Downtime Product quality	 Biomass feedrate Throughput Particle size (fines) Product quality 	8	Particle agglomeration on auger: • Auger flight deformation • Reactions between properties and heated auger • Particle agglomeration through volatilization and recondensation.	 Particle size and distributions Moisture (<10%; >25-30%) Particle morphology Particle surface Particle density Volatiles Flow properties Inorganics composition 	 Auger geometry (screw pitch) Auger metallurgy Auger temperature profile Auger cooling configuration Auger speed Auger surface finish Auger fill volume Sweep gas rate 	8	Scheduled maintenance burnouts Observed increase in motor current, temperature fluctuation in reactor bed, and pyrolysis exit gas rates by trained operator.	3	192
Deviation from target particle size through agglomeration or attrition	Attrition • Reactor performance and yield efficiency • Further particle agglomeration and/or plugging • Increased wear rate • Material flowability Agglomeration • Decline in fluidized bed performance (incomplete conversion) • Plugging or buildup downstream • Product quality • Downtime based on burnout requirements	 Particle Size Distributions Biomass Feedrate Consistency Product Quality Process Efficiency 	6	Attrition Particles trapped in flights Agglomeration Heat flux issue in augur Heat transfer from auger to particles Incoming particle properties causing cohesion. Slower rotation speeds contributing to longer particle-auger contact time.	 Particle size distribution Moisture Particle morphology Particle surface roughness Volatile content 	 Auger geometry Temperature profile Rotation speed Compression forces 	6	Observed increase in motor current and temperature fluctuation in reactor bed	6	216

High Temperature Screw Feeder FMEA

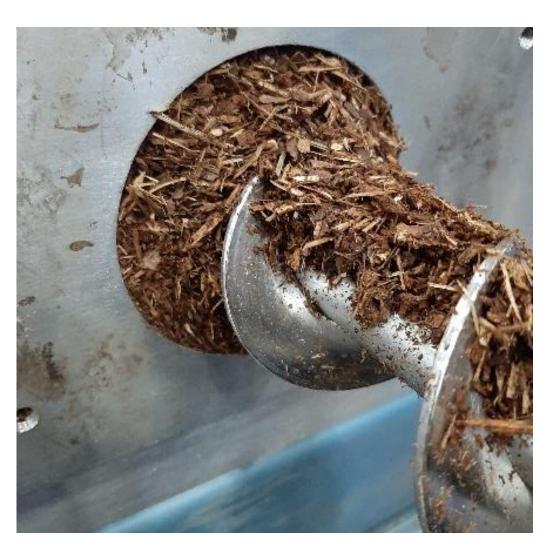

Failure	Impacts	CQAs	SEVERITY	Causes	CMAs		CPPs	OCCURRENCE	Detection methods	DETECTION	RPN
Feed system plug	 Complete Shutdown Downtime Potential equipment damage Product quality 	 Throughput Biomass feedrate Product quality 	10	Sudden and severe build-up of material: Particle agglomeration and compaction In-feed and out-feed inconsistencies Reactions between properties and heated auger Auger properties	 Particle size and distributions Moisture (<10%; >25-30%) Particle surface Compaction Particle density 	•	Auger geometry Temperature profile Auger speed	1	Visual observations by trained operator of differential pressure and motor current	10	100

Flowability Biomass - Feed System Plugs

- Material Pine Residue Whole Chips
- Material Attributes:
 - Approximate Particle Size (2, 4, 6 mm)
 - Moisture Levels (Dry (less than 5%), 20% and 40%)
 - Anatomical Fractions (whole, stem, bark, needles)
- Process Parameters
 - Auger Rotational Speed (24, 36, 48 rpm)
- Parameters of interest
 - Flowrate
 - Power Consumption

Depiction of products produced from different fractions of Southeastern softwood trees (*Figure credit:* Bardon and Hazel, 2014).

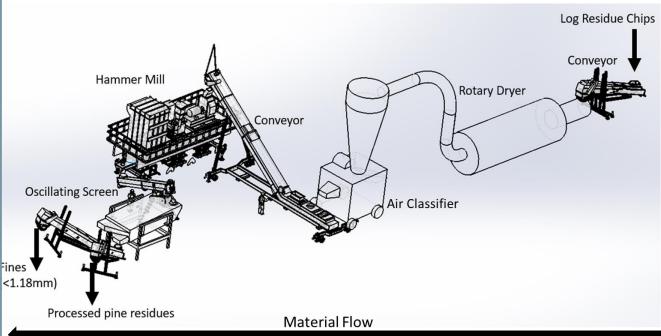
Flowability Biomass - Feed System Plugs


Sample		Power x 10 ³ (kW)	Flowrate (kg/hr)				
	24 RPM	36 RPM	48 RPM	24 RPM	36 RPM	48 RPM	
2mm_Dry	8.1 ± 5.4	7.3 ± 6.7	4.1 ± 7.5	37.3 ± 1.2	58.3 ± 1.6	78.3 ± 2.1	
4mm_Dry	37.6 ± 16.4	31.4 ± 22.0	24.8 ± 20.6	35.0 ± 1.6	55.5 ± 1.7	73.5 ± 2.8	
6mm_Dry	85.3 ± 42.0	81.1 ± 59.6	25.0 ± 27.0	35.4 ± 1.8	56.0 ± 3.8	76.1 ± 5.34	
2mm_20%MC	16.2 ± 10.5	14.2 ± 11.5	14.2 ± 12.7	38.0 ± 1.2	56.5 ± 1.8	73.9 ± 2.3	
4mm_20%MC	77.8 ± 40.0	67.1 ± 56.0	61.0 ± 62.5	37.5 ± 1.6	56.0 ± 2.5	73.4 ± 3.2	
6mm_20%MC	229.0 ± 122.2	171.0 ± 116.5	194.3 ± 167.0	35.9 ± 2.2	55.4 ± 2.9	74.9 ± 5.5	
2mm_40%MC	22.9 ± 8.6	17.8 ± 8.4	13.0 ± 10.7	46.4 ± 1.5	68.4 ± 2.2	89.3 ± 2.5	
4mm_40%MC	79.1 ± 36.0	90.9 ± 45.3	120.6 ± 40.0	53.6 ± 2.1	80.3 ± 2.6	106.6 ± 4.1	
6mm_40%MC	143.2 ± 70.5	118.0 ± 71.9	106.2 ± 82.3	55.0 ± 2.9	82.2 ± 4.7	106.5 ± 5.0	

Whole chip material

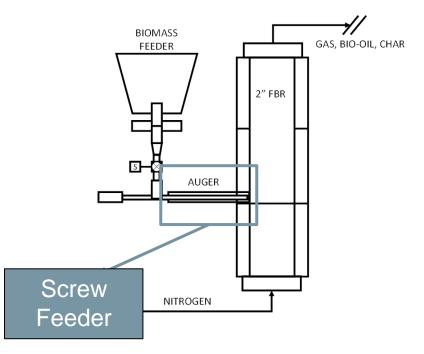
- Increases in rotational frequency resulted increases in flow rate and decrease in power consumption
- Increases in particle size increased power consumption
- Higher flow rates in general seen with increases in moisture

Plug Conditions – Higher Moistures



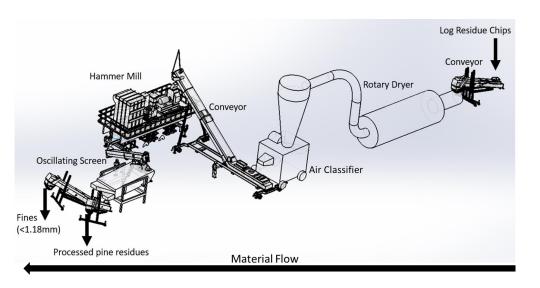
- Needle rich material
- 4 mm particle size
- 40% moisture

FMEA Implementation: Pyrolysis Conversion Pine Residues



- FMEA performed on theoretical system-wide
- FMEA on each individual unit operation

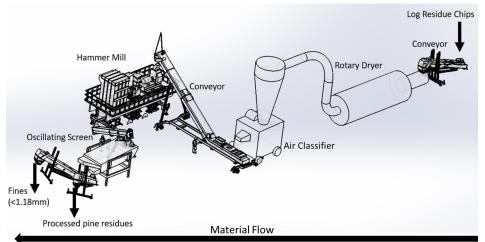
Pyrolysis Conversion System


- FMEA performed on one problematic unit operation
- **Experimental results for identified failures**

Saha, N. et al. *Fuel Processing Technology* 245 (2023): 107725. https://doi.org/10.1016/j.fuproc.2023.107725

System Wide FMEA Results

- FMEA interviews on whole system
- FMEA interviews on each unit operation
- Target CQAs
 - Moisture (<10%)
 - Fixed Carbon (≥ 18%)
 - Particle Size (1.18–6mm)
 - Ash Content (≤ 1.75%)
 - Throughput


Unit Operation	System	Dryer (Rotary)	Air Classifier	Grinder (Hammer mill)	Oscillating Screen
Nameplate Capacity Throughput	1 tons/hr	5 tons/hr	1 tons/hr	5 tons/hr	5 tons/hr
Typical Throughput Input Format	1 ton/hr <2" chipped residues	1 ton/hr <2" chipped residues	1 tons/hr <2" chipped residues	5 tons/hr <2" white wood rich	3 ton/hr <½" white wood rich
Output Format	1.18mm > white wood rich material < 6mm	<2" chipped residues	Heavy stream: white wood rich; Light stream(s): bark, needle, fines rich	½" minus white wood rich material	1.18mm > white wood rich material < 6mm
Fixed process parameters	Screen sizes and mill speed on grinder and screen size on oscillating screen			Screen size: 1/2" Mill speed	Top screen: 1/4" Bottom screen: 10 mesh

FMEA on Preprocessing

Mitigation

Highlights

- Rotary dryer failures resulted in cascading failures downstream due to increased moisture.
 - Fire risk
- Best control for ash content (lowest risk scores).
- Fixed carbon risk score based on lack of chemical specific sensors.

Critical Quality Attributes Specification		Impacting Unit Operation(s)	Max RPN ^a (layer)	Mitigation
Offical Quality Attributes	Opecification	impacting offic operation(s)	Max IXI IX (layer)	Use of visual Al
Moisture content	≤ 10%	Rotary Dryer	180 (Product Quality)	
			144 (Process Efficiency)	to detect non-
Fixed carbon	≥ 18%	Air Classifier	192 (Product Quality)	white wood
			72 (Process Efficiency)	concentrations
Particle size	1.18mm-6mm	Grinder, Oscillating Screen, Air Classifier	108 (Process Efficiency)	RPN 72
Ash content	≤ 1.75%	Air Classifier, Oscillating Screen	90 (Process Efficiency)	KFN 12
			80 (Product Quality)	
Throughput	Not defined	All equipment	180 (Product Quality)	
			54 (Process Efficiency)	

^aRPN=risk priority number; ranges from 1-1000 and is based on quantifying the severity, occurrence, and detection of a given risk

Key Takeaways and Future Work

Outcomes

- Standardized framework to represent and semi-quantitatively rank CMAs, CPPs, and CQAs in the context of a 'Failure' across multiple unit operations.
- Help in identifying experimental needs.
- System-wide identification of pinch points
- Ability to quantify impacts of research driven improvements through mitigation.

Challenges

- Very dependent on SMEs expertise
- Unidentified critical properties
- Unidentified impacts (e.g., Economic)

- Multiple SMEs
- Use of literature or experimental results
- Input for techno-economic analyses

Questions

Rachel Emerson
Idaho National Laboratory
rachel.emerson@inl.gov
208-526-1931

