Using INL Capabilities to Support Meeting the Needs for HALEU

John C Wagner

October 2018
Using INL Capabilities to Support Meeting the Needs for HALEU

John C Wagner

October 2018

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517
Using INL Capabilities to Support Meeting the Needs for HALEU

John C. Wagner
Nuclear Science and Technology
Associate Laboratory Director,
Idaho National Laboratory
john.wagner@inl.gov
(208) 526-7977
National Reactor Innovation Center is being established at INL

• Enable the deployment of new nuclear systems by using INL’s unique infrastructure and expertise to resolve the basic R&D challenges confronting the most promising advanced reactor concepts.
 – Fuels and core designs that improve the economics of current operating nuclear power plants
 – Demonstration and first-of-a-kind deployment of new reactor concepts:
 • Advanced small-modular light water reactors
 • Advanced non-light water reactors
 • Microreactors
 – Development of fuel cycle infrastructure

- Xe-100 200 MWt PBR
- ARC-100, MWe
- 150-1500 MWe, Moltex

Inside a NuScale Small Modular Reactor Building
Vision for Advanced Reactor Pipeline

Demonstrate first <10MW micro-reactor by 2021
- Resolve advanced reactor issues
- Open new markets for nuclear energy
- Provide a ‘win’ to build positive momentum

SMR operating by 2026
- Enable deployment through siting and technical support
- Joint Use Modular Plant leased for federal RDD&D

Versatile Test Reactor (VTR) operating by 2026
- Supported by micro-reactor demonstration
- Re-establish leadership in fast-spectrum testing and fuel development capability
- Support non-LWR advanced reactor demonstration

Non-LWR Advanced Demonstration Reactor by 2030
- Demonstrate non-LWR technology replacement of US baseload clean power capacity
Advanced reactor fuels are needed for advanced reactors

- Most advanced reactors require fuel/cladding systems that differ from those used in traditional light water reactors
 - Physical form - metallic, mixed oxide, nitride, carbide, dispersion, coated particle, even liquid fuel
 - U-235 enrichment - 5-20%
 - Cladding - composites or coated materials

- There is a need for U enriched between 5 and 20% (commonly referred to as High Assay Low Enrich Uranium [HALEU]) for advanced reactors development
 - Currently there is no domestic capability
INL R&D capabilities are being used to evaluate options for addressing HALEU needs

- Commercial reactor concepts require HALEU for startup cores
- In addition, there are other national missions that require a reliable supply of enriched uranium

NEI Estimated Annual Commercial Requirements for HALEU to 2030 (MTU/yr)

<table>
<thead>
<tr>
<th>Company</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>Total</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrichment Range</td>
<td>13-19.75%</td>
<td>19-19.75%</td>
<td>10-19.75%</td>
<td>15.5%</td>
<td>19.75% and 12.6%</td>
<td>19.75%</td>
<td>17.5%</td>
<td>14.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>0.001</td>
<td></td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>2019</td>
<td>0.006</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.506</td>
<td>1.532</td>
</tr>
<tr>
<td>2020</td>
<td>0.7</td>
<td>1.5</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.21</td>
<td>3.7</td>
</tr>
<tr>
<td>2021</td>
<td>0.7</td>
<td>2.5</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>4.2</td>
<td>7.9</td>
</tr>
<tr>
<td>2022</td>
<td>0.7</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.7</td>
<td>11.6</td>
</tr>
<tr>
<td>2023</td>
<td>0.7</td>
<td>3.5</td>
<td>1.1</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.8</td>
<td>30.4</td>
</tr>
<tr>
<td>2024</td>
<td>0.7</td>
<td>5.0</td>
<td>1.1</td>
<td></td>
<td>3.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td>10.3</td>
<td>40.7</td>
</tr>
<tr>
<td>2025</td>
<td>0.7</td>
<td>6.0</td>
<td>1.8</td>
<td>0.4</td>
<td>3.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td>12.4</td>
<td>53.1</td>
</tr>
<tr>
<td>2026</td>
<td>23.3</td>
<td>7.0</td>
<td>1.8</td>
<td>0.4</td>
<td>3.0</td>
<td>21.4</td>
<td>0.5</td>
<td></td>
<td>57.4</td>
<td>110.5</td>
</tr>
<tr>
<td>2027</td>
<td>35.0</td>
<td>9.0</td>
<td>1.8</td>
<td>0.9</td>
<td>5.0</td>
<td>21.4</td>
<td>0.5</td>
<td></td>
<td>73.6</td>
<td>184.1</td>
</tr>
<tr>
<td>2028</td>
<td>46.6</td>
<td>11.0</td>
<td>1.8</td>
<td>1.8</td>
<td>25.0</td>
<td>21.4</td>
<td>0.5</td>
<td></td>
<td>108.1</td>
<td>292.2</td>
</tr>
<tr>
<td>2029</td>
<td>58.3</td>
<td>13.0</td>
<td>1.8</td>
<td>1.8</td>
<td>15.0</td>
<td>21.4</td>
<td>0.5</td>
<td></td>
<td>111.8</td>
<td>404.0</td>
</tr>
<tr>
<td>2030</td>
<td>70.0</td>
<td>13.5</td>
<td>1.8</td>
<td>1.8</td>
<td>61.0</td>
<td>15.0</td>
<td>21.4</td>
<td>1.0</td>
<td>185.5</td>
<td>589.5</td>
</tr>
</tbody>
</table>

https://www.nei.org/resources/letters-filings-comments/nei-letter-perry-need-haleu
INL HALEU R&D Program Objectives

- Evaluate the feasibility of providing an interim supply of HALEU to support fuel-fabrication needs for R&D, and potential demonstration of advanced reactor concepts
- Support the development of HALEU infrastructure to include transportation, fuel fabrication, and advanced reactor testing

https://www.nei.org/resources/letters-filings-comments/nei-letter-perry-need-haleu
HALEU R&D Program Strategy

INL is looking into the feasibility of recovering and down-blending HEU from feedstocks with large ratios of HALEU/HEU that otherwise will be disposed at a cost to tax payers

- Possible feedstocks include end-of-life fuels from diverse irradiation origins
 - EBR-II
 - Naval
 - Others (ATR, orphan irradiated materials, etc.)

- Final HALEU form is determined by fuel specifications and fabrication needs

- Down-blending feedstocks varied and may include:
 - 5% enriched LEU
 - Depleted Uranium
 - Natural Uranium

- Recovery processes (all available/under development at INL) are determined by characteristics of the feedstock and may include:
 - Electrochemical Process
 - Hybrid Process (ZIRCEX)
 - Others
Electrochemical separations process is being applied to EBR-II fuel treatment

Is a batch process that separates and recovers uranium metal from used HEU nuclear fuel and down-blends to HALEU

- **Step 1** – Irradiated HEU EBR-II fuel is prepared and placed into a high temperature molten salt electrorefiner which facilitates separation of U metal from fission products

- **Step 2** – Recovered uranium undergoes vacuum distillation to remove electrorefiner salt and is down-blended to <20% U-235

- **Step 3** – The recovered uranium metal is configured to serve as HALEU feedstock by reheating and casting into low-dose uranium metal ingots

DOE is evaluating the environmental impact of this process and will be issuing a draft Environmental Assessment for public review and comment later this month
A hybrid (ZIRCEX) process is also being developed and evaluated

A three step process that recovers HEU from nuclear fuel and down-blends it to HALEU

- **Step 1** – ZIRCEX is a dry head-end process to remove cladding (zirconium or aluminum) from nuclear fuel.
- **Step 2** – Uranium is purified from fission products by a very compact, modular solvent extraction system. The fission products are immobilized in glass using a small in-can melt.
- **Step 3** – The uranium is down-blended to <20% U-235 prior to fuel fabrication.
R&D ZIRCEX – Status

- Design, fabrication and installation of a ZIRCEX ¼ pilot plant scale system – completed
- Functionality testing – underway
- Approval to start R&D testing with zirconium expected during October 2018
R&D FY19 – First Quarter Milestones

- Complete staffing for alternatives study – **October 30, 2018**
- Initiate testing of surrogate fuel in ZIRCEX Material Recovery Pilot Plant – **November 2018**
- Begin engineering scoping studies to better understand issues, costs and schedule – **November 2018**
Questions ?