

Comparison of FAST Experiments to BISON Simulations

November 2023

Alexander Lee Swearingen, Boone Beausoleil, Luca Capriotti, Kyle Mitchell Paaren

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Comparison of FAST Experiments to BISON Simulations

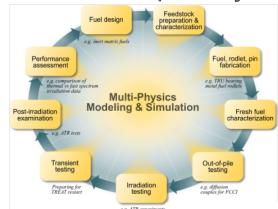
Alexander Lee Swearingen, Boone Beausoleil, Luca Capriotti, Kyle Mitchell Paaren

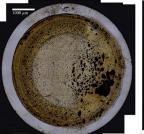
November 2023

Idaho National Laboratory Idaho Falls, Idaho 83415

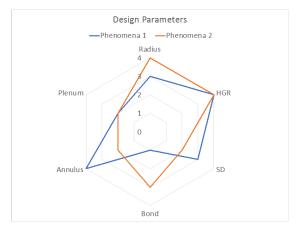
http://www.inl.gov

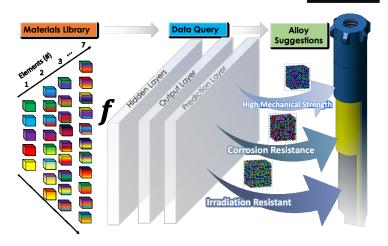
Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

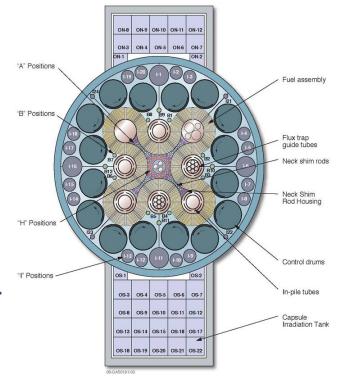

Comparison of FAST Experiments to BISON Simulations

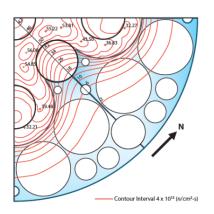

November 28 – 30, 2023 MMSNF Workshop 2023 Alexander Swearingen, Geoffrey L. Beausoleil II, Kyle Paaren, and Luca Capriotti

FAST Motivation


- Fuel testing takes too long
 - Slow iteration around the wheel
- Conventional fuel tests within ATR is high risk
 - Highly sensitive to fabrication tolerances
 - Execution failures are unknown for extended periods of time
- Model based design and true multi-physics performance codes require deeper, more diverse data sets
 - 13,000 data points of one design is not useful
 - Increased variation in experimental designs allows for more robust assessment and V&V







Advanced Test Reactor (ATR)

- Serpentine driver core creates nine flux traps and numerous other test positions
- 77 test volumes up to 48 inches long and <5.25 inches in diameter
- 60-day cycles with ~3 cycles per year
- High neutron flux enables accelerated testing for fuel and materials development
 - Fast/thermal flux ratios ranging from 0.1
 1.0
 - Thermal flux in the range of 1E13-1E14 n/cm2/s
 - Fast flux in the range of 1E12-1E14 n/cm2/s
- Collocated with world class suite of properties testing and characterization equipment in shielded hot cells

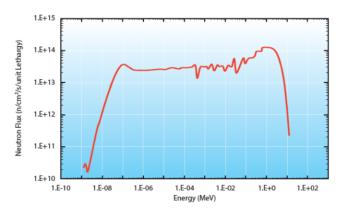
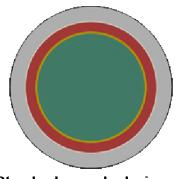
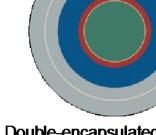


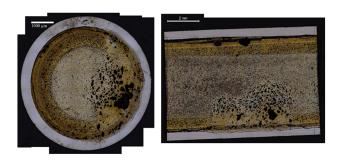
Table 2. Approximate peak flux values for various ATR capsule positions for a reactor power of 110 MW. (22 MW. in each labe)

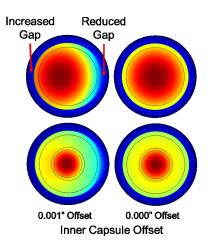

for a reactor power of 110 MW_{th} (22 MW_{th} in each lobe).


Position	Diameter (cm/in) ^a	Thermal Flux (n/cm²-s) ^b	Fast Flux (E>1 MeV) (n/cm²-s)	Typical Gamma Heating W/g (SS) ^c
Northwest and Northeast Flux Traps Other Flux Traps	13.3/5.250 7.62/3.000 ^d		2.2 x 10 ¹⁴ 9.7 x 10 ¹³	
A-Positions (A-1 - A-8) (A-9 - A-16)	1.59 1.59/0.625	1.9 x 10 ¹⁴ 2.0 x 10 ¹⁴	1.7 x 10 ¹⁴ 2.3 x 10 ¹⁴	8.8
B-Positions (B-1 - B-8) (B-9 - B-12)	2.22/0.875 3.81/1.500	2.5 x 10 ¹⁴ 1.1 x 10 ¹⁴	8.1 x 10 ¹³ 1.6 x 10 ¹³	6.4 5.5
H-Positions (14)	1.59/0.625	1.9 x 10 ¹⁴	1.7 x 10 ¹⁴	8.4
I-Positions Large (4) Medium (16) Small (4)	12.7/5.000 8.26/3.500 3.81/1.500	1.7 x 10 ¹³ 3.4 x 10 ¹³ 8.4 x 10 ¹³	1.3 x 10 ¹² 1.3 x 10 ¹² 3.2 x 10 ¹²	0.66

A Revised Capsule Design

- Rekindling a small test performed in the 1960's, a FASTer approach to testing was developed
- The Fission Accelerated Steady-state Test (FAST) utilizes a reduced diameter fuel pin to achieve two objectives:




Standard capsule design Prototypic rodlet diameter

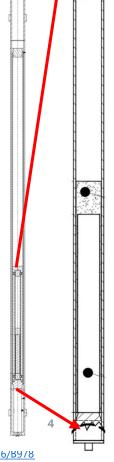
Double-encapsulated design ~1/2 standard rodlet diameter

1. Improve experiment reliability: reduced sensitivity to fabrication tolerances and capsule/pin eccentricity

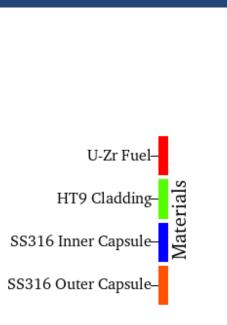
2. Increase burnup rate for fuel experiments: reduce time to achieve high burnup

Given

$$Q_0 = \frac{LHGR_0}{\pi r_0^2}$$


if $r = \alpha r_0$ and LHGR=LHGR₀, then

$$Q = \frac{Q_0}{\alpha^2}$$


For
$$\alpha=\frac{1}{2}$$
,

$$Q = 4Q_0$$
$$t \sim Q^{-1} :: t \sim \frac{t_0}{4}$$

BISON Simulated FAST Conditions

- Outside outer capsule wall is ATR coolant
- Helium inside outer capsule
- Sodium inside inner capsule
- Thermal bond between fuel and cladding
- Top of fuel pin assumed to be equal to Peak Inner Cladding Temperature (PICT)

FAST Metal Fuel Test Matrix (U-10Zr)

Capsule	Rodlet ID	Fuel Comp	Geometry	Bond	Liner	Target BU
AFC-FAST-016=	FAST-035	U-10Zr	Solid	Na	-	2.0%
AFC-FAST-010—	FAST-036	U-10Zr	Solid	Na	-	2.0%
AEC EACT 005	FAST-007	U-10 Z r	Annular	Не	-	4%
AFC-FAST-005=	FAST-008	U-10Zr	Solid	Na	-	4%
AEC EAST 000—	FAST-025	U-10Zr	Solid	Na	Zr	8%
AFC-FAST-009=	FAST-051	U-10Zr	Solid	Na	-	8%
AEC EAST OOG	FAST-015	U-10Zr	Annular	Не	-	8%
AFC-FAST-006=	FAST-016	U-10Zr	Solid	Na	-	8%
AEC EAST 014	FAST-039	U-10Zr	Solid	Na	-	10%
AFC-FAST-014=	FAST-040	U-3Pd-10Zr	Solid	Na	-	10%
AEC EACT 012—	FAST-031	U-10 Z r	Solid	Na	-	10%
AFC-FAST-013=	FAST-032	U-3Sn-10Zr	Solid	Na	-	10%
AEC EACT 015—	FAST-045	U-10 Z r	Solid	Na	-	10%
AFC-FAST-015=	FAST-046	U-3Sb-10Zr	Solid	Na	-	10%
AFC-FAST-003 F	'AST-003 (OA)	U-10 Z r	Solid	Na	-	12%
AFC-FAST-010	FAST-026	U-10Zr	Solid	Na	Zr	12%
Arc-rasi-010—	FAST-052	U-10Zr	Solid	Na	-	12%
AFC-FAST-007	FAST-047	U-10Zr	Annular	Не	-	12%
AFC-FAST-00/	FAST-048	U-10Zr	Solid	Na	-	12%
AFC-FAST-011	FAST-027	U-10Zr	Solid	Na	Zr	16%
ΑΓC-ΓΑS1-011	FAST-053	U-10Zr	Solid	Na	-	16%
AFC-FAST-008	FAST-049	U-10Zr	Annular	Не	-	16%
Arc-ras1-006	FAST-050	U-10Zr	Solid	Na	-	16%

•	Each capsule in the small-l positions
	contains a novel experiment and
	control experiment

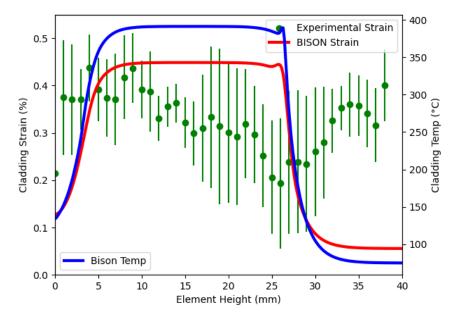
- Controls are solid, 75% SD U-10Zr in HT9
- Experiments include
 - He-bonded annular fuel
 - Additives: Pd, Sb, & Sn
 - Zr liners
- PIE underway for all low burnup pins (green)
- Recently removed from the reactor and awaiting transport (yellow)

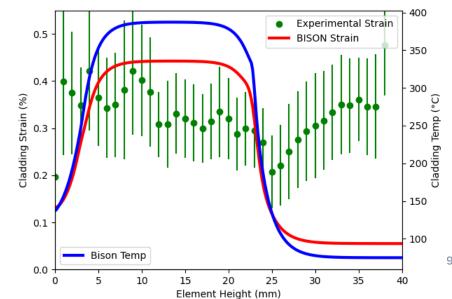
AEC EAST 012—	FAST-028	U-10 Z r	Solid	Na	Zr	20%
AFC-FAS1-012	FAST-054	U-10Zr	Solid	Na	-	20%

FAST Metal Fuel Test Matrix (U-Mo)

- Experiments include
 - Solid and annular fuel geometries
 - Different wt % Mo
 - Zr liners
 - Unique fuel loading (yellow)
 - Depleted UNbZr slug sandwhiched between two U-10Mo slugs
- PIE underway for all U-Mo pins

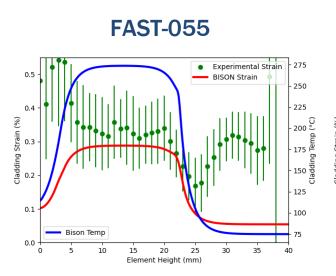
Capsule	Rodlet ID	Fuel Comp	Geometry	Bond	Liner	Target LHGR (W/cm)
aLEU-	FAST-055	U-10Mo	Solid	Na	-	200
FAST-001	FAST-056	U-10Mo	Solid	Na	-	275
aLEU-	FAST-057	U-10Mo	Solid	Na	_	225
FAST-002	FAST-058	U-10Mo	Solid	Na	_	287
aLEU- FAST-003	FAST-059	U-7Mo	Solid	Na	<u>-</u>	225
aLEU-	FAST-061	U-10Mo/UNbZr	Annular	Na	-	425
FAST-004	FAST-069	U-10Mo	Annular	Na	Zr	275
aLEU-	FAST-062	U-10Mo/UNbZr	Annular	Na	-	425
FAST-005	FAST-070	U-10Mo	Annular	Na	Zr	275

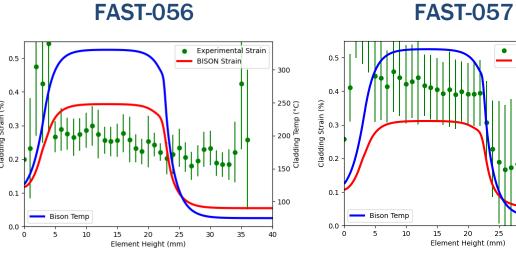


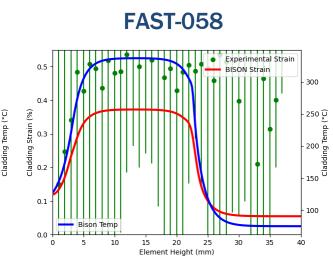

FAST U-10Zr Results Comparison

FAST-007

Pins	Burnup (% FIMA)	CLT (°C)	PICT (°C)	Max Cladding Strain (%)
FAST-007	4.02	539.12	486.24	0.449
FAST-008	3.32	580.65	437.14	0.442


FAST-008

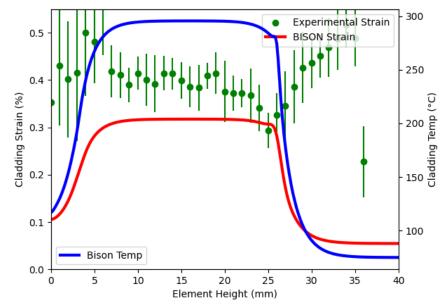


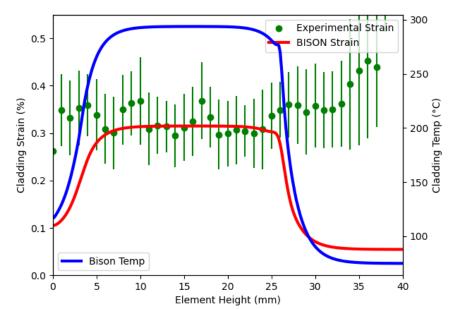


FAST U-10Mo Solid Pin Results Comparison

Experimental Strain

Pins	Burnup (% FIMA)	CLT (°C)	PICT (°C)	Max Cladding Strain (%)
FAST-055	1.68	372.78	317.24	0.288
FAST-056	2.34	465.52	383.20	0.364
FAST-057	1.88	400.83	338.26	0.311
FAST-058	2.42	476.18	391.24	0.372

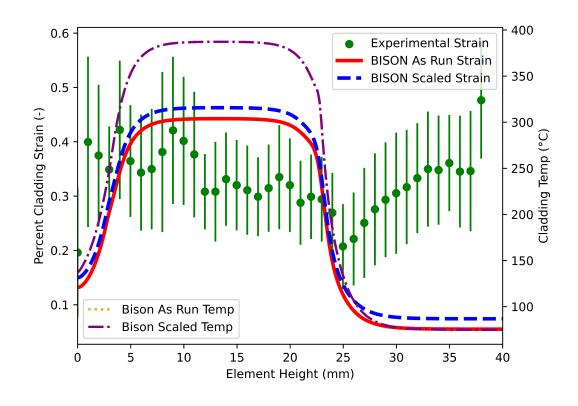



FAST U-10Mo Annular Pin Results Comparison

FAST-069

Pins	Burnup (% FIMA)	CLT (°C)	PICT (°C)	Max Cladding Strain (%)
FAST-069	2.30	394.13	364.07	0.317
FAST-070	2.28	391.92	362.09	0.315

FAST-070



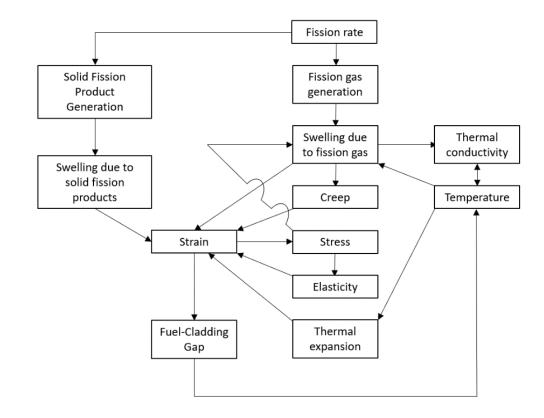
BISON HT9 Comparisons

- HT9 cladding is not scaled like fuel
- Running comparison case
 - Scaled flux of EBR-II X425 to FAST-008 timescale
 - Applied flux to cladding only
 - Compare cladding strains
- Hoping to assess the impact of irradiation creep model on overall performance.

FAST (U-10Zr) to EBR-II

- Control pins are used in each capsule; U-10Zr, 75%SD solid pin, Na-bonded, HT9 clad
- FIPD provides extensive datasets of burnup history and PIE data from EBR-II data as well as supporting Bison input file setup
- X425 and sub-assemblies have a burnup range that matches well with all control pins of the FAST tests
 - Pin T423
 - Pin T424
- Assessments of X425 are being used to compare cladding irradiation behavior with burnup levels

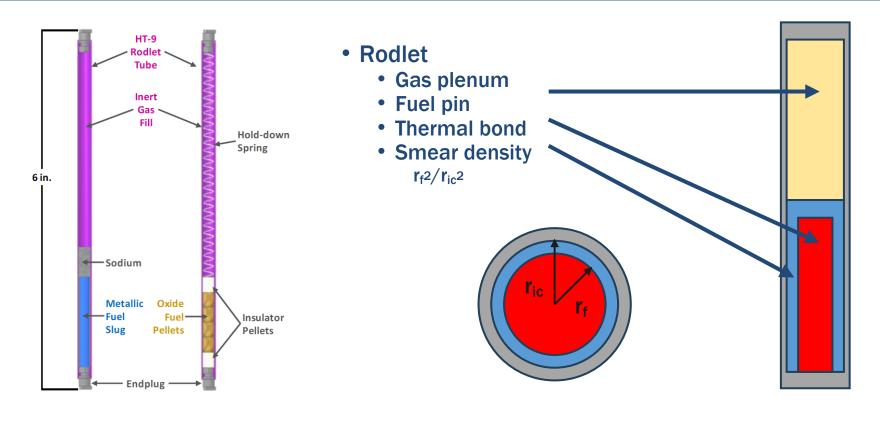
Experiment	Burnup (%FIMA)	Cladding Fluence (PICT (°C)	Claddin g DPA
FAST-008	3.9%		410	1.61
FAST-016	8.5%		470	2.89
FAST-031	9.54%		510	2.66
FAST-048*	14.6%		543	4.16
FAST-052*	13.2%		475	4.33
FAST-050*	18.9%		500	5.40
FAST-053*	17.8%		476	5.78
X425A-T423 (142B-0.15)	3.9%		411	16.43
X425A-T423 (146A-0.583)	8.03%		468	39.82
X425A-T423 (146B-0.55)	9.55%		512	47.96
X425A-T424 (144A-0.117)	3.83%		435	17.3
X425A-T424 (150A-0.717)	8.57%		477	42.2
X425B-T424 (149A-0.517)	9.48%		504	47.85
X425C-T424 (158A-0.783)	14.6%		526	73.52
X425B-T424 (153A-0.417)	13.78%		477	71.65
X425C-T424 (158A-0.517)	17%		489	90.49

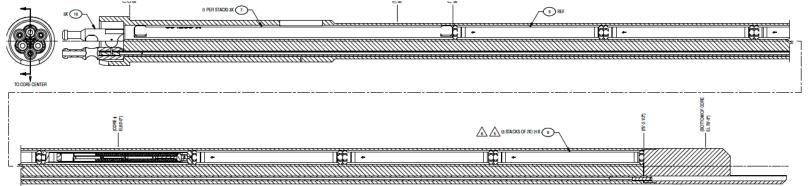


X425C-T424 (158A-0.517) 489 90.49

Conclusions/Look Ahead

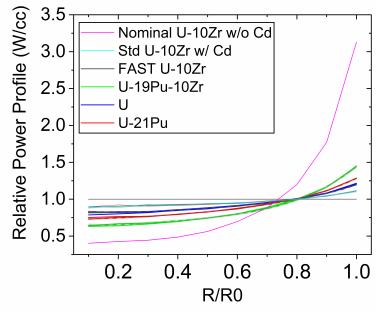
- FAST experiments useful for accelerating burnup in fuels
- BISON simulations have varying performance for scaled simulations
 - U-10Zr have so far overpredicted experimental profilometry data
 - U-Mo tend to underpredict experimental profilometry data
- BISON simulations show significant increase in HT9 strain under X425 irradiation conditions
- Complete comparison of U-10Zr pins
- Compare FAST simulations to EBR-II Simulations
- Evaluate BISON sensitivity to scaling

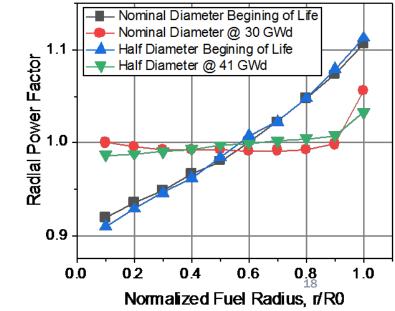




Fuel Testing Capsule Basics

- Irradiation Experiment
 - Basket
 - Capsule
 - Rodlet




Burnup Acceleration

Case	Burnup (at%) per 55 day ATR cycle	Time to Achieve 30 at.% Burnup (years)
Full Diameter Small B, 365 W/cm	0.7	11.7
One-Half Diameter Small I, 300 W/cm	3.6	2.3
One-Third Diameter Small I, 180 W/cm	5.1	1.6

Initial Condition	Burnup Condition	Burnup (GWd/t _u) per 55 day ATR cycle	Time to Achieve 60 GWd/t _u
Full Diameter UO ₂ 595.4 W/cm, 4.95% Enrichment	28.6 GWd/t _U 321 W/cm 300 EFPD	~5 GWd/t _U	12 cycles (3 years)
One-Half Diameter UO ₂ 336.4 W/cm, 9.9% Enrichment	41.4 GWd/t _U 212 W/cm 180 EFPD	~12 GWd/t _U	5 cycles (1.25 years)

