

Online monitoring using cloud-based applications.

November 2023

Cody McBroom Walker

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Online monitoring using cloud-based applications.

Cody McBroom Walker

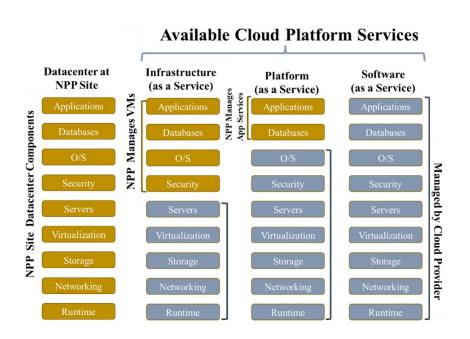
November 2023

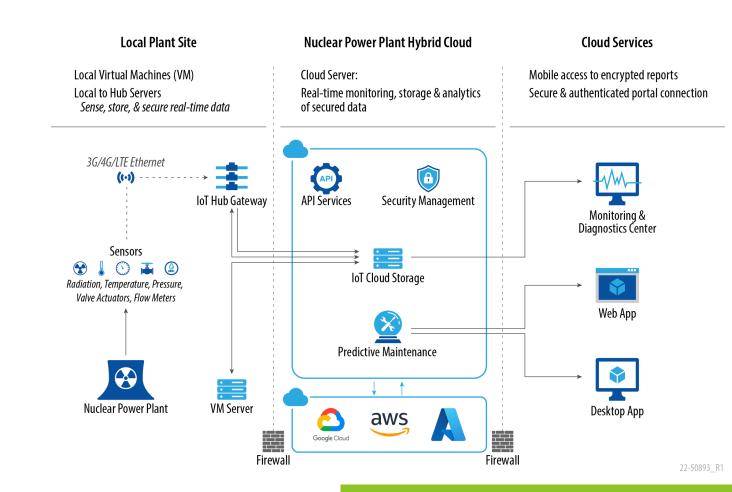
Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 Cody Walker, PhD
Research Scientist at
Idaho National Laboratory
November 20, 2023

Online Monitoring Using Cloud-Based Applications

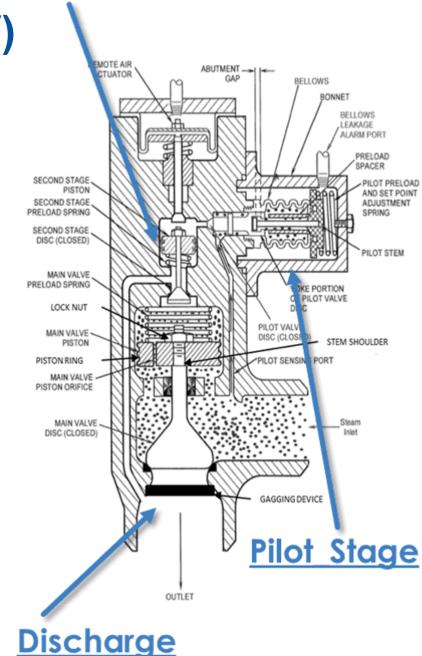



Outline

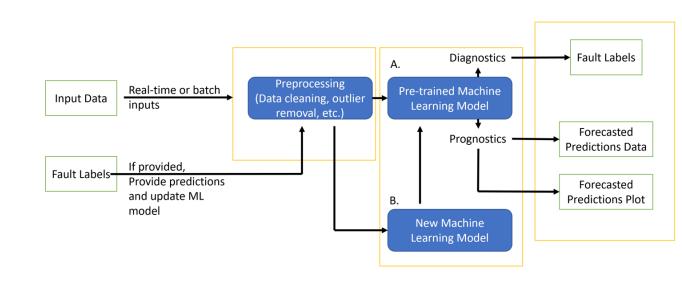
- Architecture for nuclear power plant-to-cloud computing
- Safety relief valve problem
- Online model training
- Speed testing
- Predictive capabilities
- Overall costs

Online Monitoring Using Cloud Services Will Require Additional Sensors, Systems and Choices

- The end-goal of online monitoring is predictive maintenance
- Cloud computing may be a cheaper way to achieve that goal



2ND STAGE


Monitoring a Safety Relief Valve (SRV) Using Multiple Thermocouples.

- SRVs (also known as a pressure relief valve) are highly reliable, nonpowered ways to relieve pressure
- Used in systems that may build up pressure under accident conditions
- Common stressors include:
 - Wear (mechanical stress, cavitation, corrosion, erosion)
 - Temperature (rate of corrosion, spring rate, etc.)
- Data were taken over 14 months
- Monitoring locations include pilot stage, second stage valve body, and downstream discharge.

A/B Model Testing Allows for Continual Updating While Maintaining a Stable Model for Use.

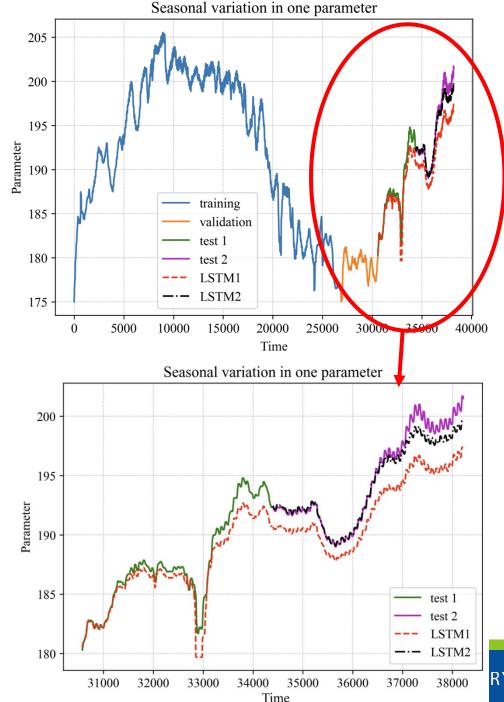
- Models for this research:
 - Feedforward Neural Network (FNN)
 - Long Short-Term Memory (LSTM)
- Preprocessing cleaned the data before model training or updating
- Pre-trained Model A is used to diagnose the current state of health and to predict future parameter values
- Model B is Model A but it is being continually updated with new data
- Model B eventually replaces Model A and a new model begins updating.

Cloud Computing has Elastic Resources and Can Scale Up or Down Depending on Demand

Resources Compared

	Local	HPC (CPU)	HPC (GPU)	Microsoft Azure
Processor	Intel CITM i7-9700 CPU @ 3.00 GHz	2 Intel Xeon 8268 CPUs @ 2.90 GHz 24 cores per CPU	NVidia Tesla V100 32 GPU	28–112 Gb Memory 8–32 Cores
Installed RAM	32 Gb	8 Gb RAM per core	32 GB RAM	14 Gb Memory

Resources Had Comparable Results


Cloud Computer Speed Testing (in seconds)						
Test	Local	HPC (GPU)	HPC (CPU)	HPC (multi-CPU)	Azure	
Loading Data	3.26 ± 0.10	2.87 ± 0.02	N/A	N/A	14.67 ± 0.29	
Preprocess	34.89 ± 0.10	37.94 ± 0.02	N/A	N/A	38.00 ± 0.29	
Train FNN 1	8.09 ± 2.01	27.57 ± 5.59	7.18 ± 1.97	11.14 ± 2.51	7.12 ± 2.14	
Update FNN 2	0.97 ± 0.06	2.62 ± 0.2	1.04 ± 0.027	_	1.07 ± 0.03	
Train LSTM 1	103.67	89.62	126.68	162.47	96.07	
Update LSTM 2	8.78	7.76	14.5	_	8.72	

<u>Updated Models Reduced Data Drift</u>

A/B Model Testing				
Test	FNN (RMSE)	LSTM (RMSE)		
Model 1 Test A	1.361 ± 0.679	1.411		
Model 1 Test B	2.559 ± 1.264	2.792		
Model 2 Test B	0.593 ± 0.300	0.504		

Updating Models with Recent Data Reduces Model Drift

- A large seasonal component can be seen in the temperature measurement
- Model A was trained on the first 10 months of data, validated in 1.5 months, and tested on ~1.5 months
- Model B was also trained on Test 1 before being tested on Test 2
- Results show that updating with more recent data can reduce model drift when using time series data.

Current Prices for Cloud Computing Could Be Cost Effective for On-line Monitoring

Current Estimated Costs to Maintain On-site Diagnostics

Hardware	Number of Items Saved	Item Cost	Total Cost	Annual Costs	Monthly Costs	Assumptions
Servers	18	\$4,500.00	\$81,000.00	\$16,200.00	\$1,350.00	Replaced every 5 years
Network Elements (e.g., routers)	30	\$800.00	\$24,000.00	\$4,800.00	\$400.00	Replaced every 5 years
			Software			
Commercial Software	Base Cost	\$200,000.00	\$200,000.00	\$30,000.00	\$2,500.00	Maintenance contracts
Purpose-Built Software	Base Cost	\$500,000.00	\$500,000.00	\$75,000.00	\$6,250.00	Contract programming
IT Support Staff Average Salary	17	\$150,000.00	\$2,550,000.00	\$2,550,000.00	\$212,500.00	_
Offsite Backup	_	_	_	\$3,600.00	\$300.00	_
Cybersecurity		_	_	\$20,000.00	\$1,666.67	_
Operational Staff	35	\$150,000.00	\$5,250,000.00	\$262,500.00	\$21,875.00	Fraction of their time
Manual Sensor Reading	8	\$85,000.00	\$680,000.00	\$680,000.00	\$56,666.67	Headcount for manual sensor reading/ recording
Facilities Costs						
Electricity	_	_	_	\$300,000.00	\$25,000.00	Yearly cost of electricity
Total	_	_	_	\$3,942,100	\$328,508	_

Estimated Installations to Enable Cloud Computing

Total Cloud Costs	Initial Costs	Annual Costs
Sensors	\$300,000.00	\$136.00
In-building Network	\$1,131,480.00	\$176,278.00
Network Aggregation Equipment	\$50,000.00	\$15,000.00
Installation and Cloud Set-up	\$600,000.00	\$60,000.00
Total	\$2,081,480.00	\$251,414.00

Estimated Reoccurring Costs

Cost	Number of Applications	Total
\$567.00	25	\$ 14,175.00
	-	
		\$703,800.00
		\$150,000.00 \$1,500,000.00
φ150,000.00 —		\$2,367,975.00
	\$567.00 \$28,152.00 \$6,000.00 \$150,000.00	Cost Applications \$567.00 25 \$28,152.00 25 \$6,000.00 25

Total Cost Comparison

Cost Comparison	Current Onsite Cost	Cloud Cost
Installation Cost	N/A	\$2,081,480.00
Annualized Cost	\$3,942,100.00	\$2,619,389.00

IDAHO NATIONAL LABORATORY

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy. INL is the nation's center for nuclear energy research and development, and also performs research in each of DOE's strategic goal areas: energy, national security, science and the environment.