

Promise and Challenges of Molten Salt Reactors

David Holcomb

November 29th, 2023

Avignon, France

SAMOSAFER Final Meeting

Affordable, Safe, Carbon-Free Power

Why are molten salt reactors important?

Safety

- Low-pressure
- No accidents that cannot be contained
- Strong natural circulation heat rejection
- Negative rapid reactivity feedback
- Ability to defuel for shutdown

Cost

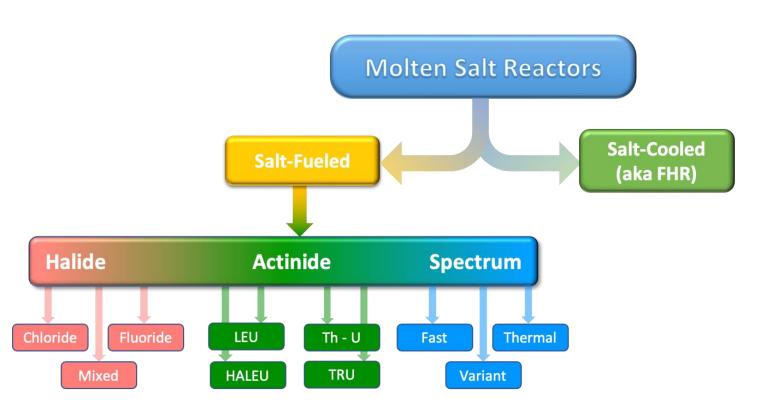
- Low-pressure → no high-strength components
- · Compact, nearby, dispatchable
- Simpler safety
 - · Lower-cost licensing
 - · Fewer nuclear safety components
- No fuel fabrication

High Exergy

- High thermodynamic efficiency
- Better support for thermal processes
 - Thermochemical hydrogen production → liquid fuels

Additional Products

Isotopes for medicine and industry


No Actinide Waste

- Indefinite fuel lifetime
- No air pollution

- Metrics of human health and happiness improve steeply with access to adequate, affordable energy
 - Except air quality
- Releasing massive quantities of combustion products into our air and water is damaging our planet

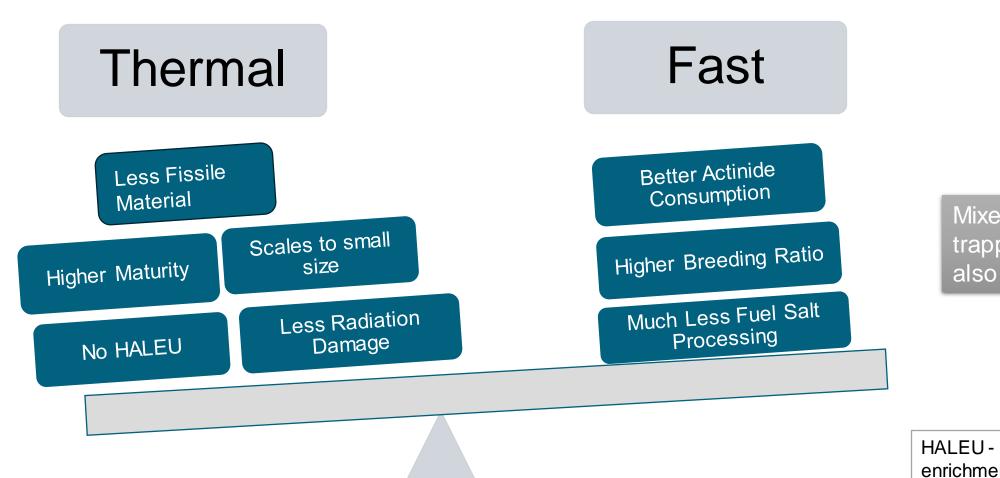
Molten Salt Reactors are Nuclear Reactors in Which a Molten Salt Performs a Significant Function in Core

- Liquid- and solid-fueled variants
- Chloride-, fluoride-, and mixed halide-based fuel salts
- Salt and liquid-metal coolants
- Thermal, fast, time-variant, and spatially variant neutron spectra
- Wide range of power scales
- Intensive, minimal, or inherent fuel processing
- Multiple different primary system configurations
- Nearly all fuel cycles

Molten-Salt Breeder Reactors are MSRs that produce more fissile material than they consume

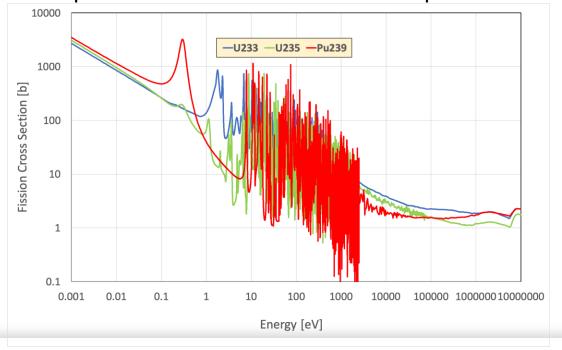
Breeding Enables MSRs to Scale to Meet Global Energy Needs for the Foreseeable Future

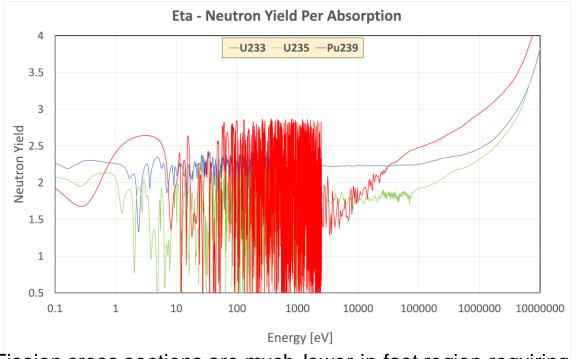
- Scale of world's energy requirements over the coming decades is well beyond capabilities of available fissile resources
 - Nuclear power currently only provides 4% of world primary energy and just over 10% of electricity
 - High-quality, high-temperature heat provided by MSRs facilitates meeting primary energy demands including transportation and process heat
 - World energy demand continues to increase
- World has substantial, near-term uranium supplies
 - Breeding becomes necessary to scale fission deployment sufficiently to be a substantial contributor to primary energy long-term
- Uranium enrichment is a proliferation vulnerable portion of existing fuel cycle that uses significant IAEA safeguards resources
 - Breeding significantly reduces reliance on uranium enrichment


Why Don't Molten Salt Breeder Reactors (MSBRs) Already Exist?

- U.S. grid has been amply supplied by other technologies
 - Load growth slowed markedly by 1980
- MSBRs remain immature and require resources for development
 - MSBRs historically judged to be too risky, insufficiently important, and too proliferation vulnerable for government investment
 - Insufficient incentive to reconsider program closure
- MSBRs incorrectly perceived to generally and necessarily have substantial proliferation risks
 - Historically proposed fuel cycle included several steps with direct access to unacceptably attractive materials
 - Changing fuel cycle avoids generating separated fissile or fissile precursor materials
 - Consideration of proliferation risks only became prominent as historic MSBR program required expanded resources

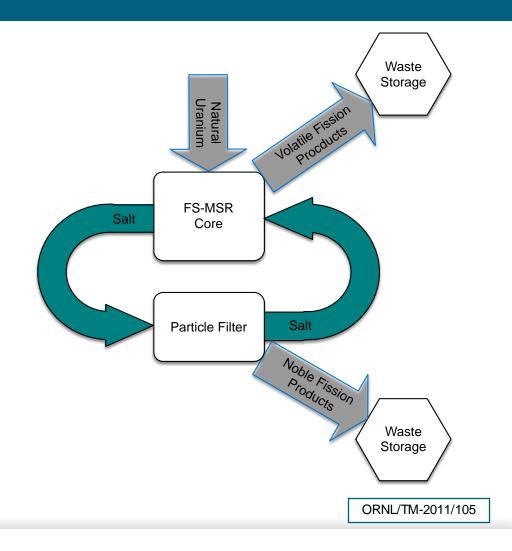
Proliferation-Resistant MSBRs Possible with Different Spectra


Mixed and fluxtrapped spectra also possible


HALEU - high-assay, lowenrichment uranium

Fast and Thermal MSBRs Employ Different Paths to Achieve Common Objectives

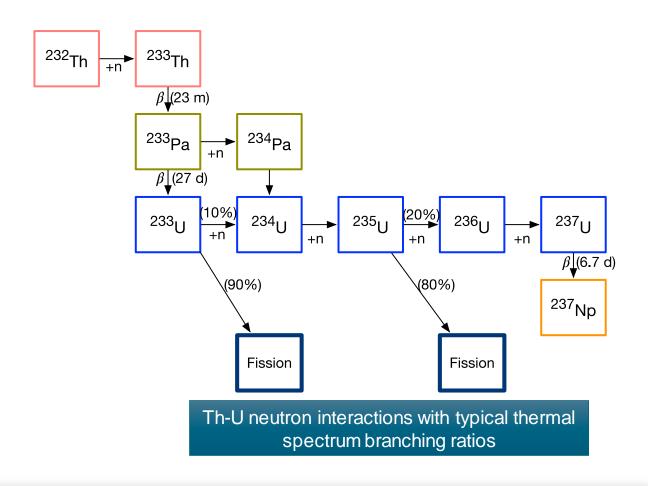
- ²³⁹Pu has highest neutron yield in fast neutron spectrum
 - Thorium frequently has higher solubility in fuel salts
- Only ²³³U has sufficiently high neutron yield at high temperatures to breed with thermal spectra



- Fission cross sections are much lower in fast region requiring more (8-10-fold) fissile material to maintain criticality
- Minimizing low atomic mass materials in core is key to hardening neutron spectrum
 - Low atomic mass materials employed to lower fuel salt melting point

Fast-Spectrum MSRs May Achieve Net Breeding without Actinide Separation

- Parasitic neutron absorption is dominated by thermal neutrons
- Fast-spectrum MSRs have few thermal neutrons
 - Thorium can be used without protactinium separation
 - Thorium has high solubility in halide salts
- Neutron yield per fission increases substantially with incident neutron energy
 - Hardening neutron spectrum key design objective
- Avoiding fuel-salt processing substantially simplifies design and operations


Fast-Spectrum MSRs Can Efficiently Consume Actinides from Spent Oxide Fuel

- Consumes high-level waste from current generation of nuclear plants
- Actinide and fission product oxides are converted to chlorides in a molten salt bath
 - Electrorefining separates the actinides into fuel salt
 - High separation from fission fission products is not required
- Number of refining stages is based primarily on waste requirements
 - Reduce the waste stream classification by stripping actinides

Fuel Salt Needs to Be Intensively Processed to Enable Thermal-Spectrum Breeding

- Protactinium-233 has a high thermal neutron capture neutron cross section (~20 b @ 90 meV)
 - Fission product absorption is primarily at thermal energies
- Minimize the thermal neutron fluence on the ²³³Pa to enable decay to ²³³U
 - Frequent co-separation
 - Low-power density
- Maintain sufficient ²³⁸U within fuel salt to avoid generating attractive nuclear material
 - Uranium is always denatured

Proliferation Resistance Results From Combining Multiple Fuel-Cycle Management Concepts in an Innovative Manner

1. Co-separation

Keeps all trivalent actinides together (i.e., Pu and/or ²³³U are never isolated)

2. Denaturing

- · Low-enrichment uranium (e.g., in LWR fuel) is denatured
- Fuel salt includes ²³³U, ²³⁵U, and ²³⁸U
 - Composition always meets IAEA requirement for highest conversion time

3. Multi-batching

- All fissile materials (and precursors) aged together ex-core
- Uranium-233 generated within low-enrichment uranium environment
 - No ²³³Pa separation
- After initial startup, only inexpensive fertile feedstocks (e.g., natural uranium and thorium) needed

Aluminum is Thermodynamically Favorable to Separate Actinides from Fluoride Salts

- Historic MSBR program employed bismuth-based reductive extraction to separate actinides from lanthanides
 - Substantial engineering effort expended to develop compatible materials and non-dispersing contactors (to prevent carryover)
- Aluminum is a more thermodynamically favorable solvent for coseparating all trivalent actinides from fluoride fuel salt (MUCH more compatible)
 - No electricity required
- Demonstrated by French fuel chemistry program in 2006 (Conocar et al. 2006, DOI: 10.13182/NSE06-A2611)
 - Attractive performance (rapid, efficient, high selectivity) in laboratory
 - No capability of separating fissile actinides from non-fissile, trivalent actinides
 - Method remains immature with substantial unknowns

MSBRs Have the Potential For a Unique Combination of Advantageous Features

- No materials more attractive than LEU or self-guarding and mixed actinides in the fuel cycle
 - Breeding without reprocessing
 - Th and/or U_{nat} are the equilibrium (i.e., makeup) feedstock materials
- Highest exergy of any reactor class
 - Well suited to support thermochemical processes including hydrogen and liquid hydrocarbon biofuels

- No actinide waste stream
 - Fuel salt has no mechanical lifetime limit so can reused indefinitely
 - Actinides progressively build up to equilibrium concentrations
- Strong passive safety features
 - Low pressure (contain)
 - Smaller potential source term (fission product removal)
 - Excellent natural circulation heat transfer (cool)
 - Effective negative reactivity feedback (control)
- Lower costs
 - Low-pressure (less massive components and structures increased factory fabrication)
 - Simpler safety

Thermal Spectrum

Rapid Thermal-Spectrum MSBR Maturation Possible (with adequate resources)

- Substantial technology base from historic MSBR program
- No-long duration development activities identified
 - Multiple parallel technology advancements needed
 - Fuel salt processing
 - Regulatory process
 - Advanced materials development and testing
 - Utility-scale components
 - Integrated system modeling
 - No long-duration fuel or material qualification required
 - Safety functions performed by proven materials

Fast Spectrum

Fast-Spectrum MSBRs Have Enormous Potential and Substantial Technical Challenges

- Much less historical information available
- Higher power density implies
 - More radiation damage to nearby materials
 - More demanding hydraulic component performance
 - More demanding passive cooling during accidents
 - Adequate fissile material solubility limit
- Require substantial fissile material for initial startup
 - Ability to obtain fissile materials from wastes from current fleet
- Chloride salts result in more complex corrosion issues

Thank you

David.Holcomb@inl.gov