

Advanced Sensors and Instrumentation Roadmap FY23

December 2023

Pattrick Calderoni

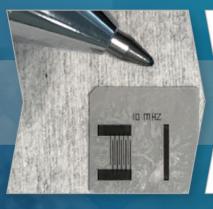
DISCLAIMER

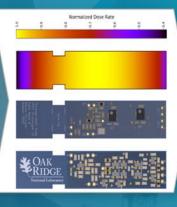
This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Advanced Sensors and Instrumentation Roadmap FY23

Pattrick Calderoni

December 2023


Idaho National Laboratory Idaho Falls, Idaho 83415


http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Advanced Sensor & Instrumentation Program Roadmap

OVERVIEW		APPLICATIONS	R&D NEEDS		ROADMAP		IMPLEMENTATION
MISSION / VISION		I&C DEFINITION	ON	STAKEHOL	DER ENGAGEMENT		LEGACY ACHIEVEMENTS

OVERVIEW: PROGRAM HISTORY

Since 1958, the United States of America has provided safe, clean, and reliable energy using nuclear reactors, with a total operating experience, as of 2020, of approximately 4,600 years [1]. Currently, the U.S. operates 93 reactors with a combined electrical output of 95,523 MW_e, supplying about 23.2% of domestic electricity generated in 2020 [2]. The development of advanced instrumentation and control (I&C) technologies is a key component of maintaining safe, efficient and reliable nuclear power.

In 2011, the Department of Energy's Office of Nuclear Energy (DOE-NE) initiated the Nuclear Energy Enabling Technologies (NEET) program to conduct research, development, and demonstration (RD&D) to support existing and next generation advanced reactor designs, and fuel-cycle technologies. Crosscutting Technology Development (CTD) is a subprogram of NEET, comprising four programs: Advanced Sensors and Instrumentation (ASI), Advanced Materials and Manufacturing Technologies (AMMT), Cybersecurity, and Integrated Energy Systems (IES). The CTD subprogram is intended to support crosscutting RD&D activities to advance the state of nuclear technology, improve its competitiveness, and promote continued contribution to meet the Nation's energy and environmental challenges.

^[1] IAEA's Power Reactor Information System (PRIS), International Atomic Energy Agency, www.iaea.org/pris, November 2021.

^[2] LLNL's Energy Flow Charts, Lawrence Livermore National Laboratory, flowcharts.llnl.gov/commodities/energy, March 2021.

OVERVIEW		APPLICATIONS	R&D NEEDS		ROADMAP	IMPLEMENTATION
MISSION / VISION		I&C DEFINITION	ON	STAKEHOL	DER ENGAGEMENT	LEGACY ACHIEVEMENTS

MISSION / VISION

Department of Energy (DOE) Mission:

"Ensure America's security and prosperity by addressing its energy, environmental and nuclear challenges through transformative science and technology solutions."

Office of Nuclear Energy (DOE-NE) Mission:

"Advance nuclear energy science and technology to meet U.S. energy, environmental, and economic needs."

Five goals DOE-NE has identified to address challenges in the nuclear energy sector, help realize the potential of advanced technology, and leverage the unique role of the government in spurring innovation:

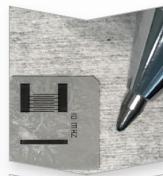
- Enable continued operation of existing U.S. nuclear reactors
- Enable deployment of advanced nuclear reactors
- Develop advanced nuclear fuel cycles
- Maintain U.S. leadership in nuclear energy technology
- Enable a high-performing organization

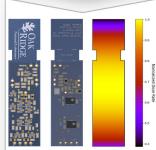
Advanced Sensors and Instrumentation (ASI) Program Mission:

"Develop advanced sensors and instrumentation and controls (I&C) that address critical technology gaps for monitoring and controlling existing and advanced reactors and supporting fuel cycle development."

Advanced Sensors and Instrumentation (ASI) Program Vision:

"Program research will result in advanced sensors and I&C technologies that are ultimately qualified, validated, and ready to be adapted by the nuclear industry."


The ASI program focuses on innovative research that directly supports and enables the sustainability of the current nuclear fleet, the development and deployment of next generation reactor designs, and advanced fuel-cycle technologies.



OVERVIEW	APPLICATIONS	R&D NEEDS		ROADMAP		IMPLEMENTATION
MISSION / VISION	I&C DEFINITION	ON	STAKEHOL	DER ENGAGEMENT		LEGACY ACHIEVEMENTS

I&C DEFINITION

The ASI program focuses on the development of *advanced sensors, instrumentation and controls*, and it is necessary to define what each term means and how they interact.

- Sensor a device that responds to a physical stimulus (such as heat, light, sound, pressure, magnetism, radiation, or motion) and transmits a resulting impulse that can be translated into a measurement for recording or acting upon once integrated in a measuring device.
- Instrument a measuring device for determining the present value of a quantity under observation. It integrates a sensor with a suitable monitoring system (analog or digital) and hardware components (for example connector, feedthrough, protective packaging) necessary to reliably fulfill its function. Instruments connect to Data Acquisition Systems (DAS) for data recording and control systems for the operation of actuators.
- **Controls** the science and engineering of methods and tools that initiate actions to actuators through measurements captured by analog and digital instruments.

OVERVIEW	APPLICATIONS	R&D NEEDS		ROADMAP		IMPLEMENTATION
MISSION / VISION	I&C DEFINITION	ON	STAKEHOL	DER ENGAGEMENT		LEGACY ACHIEVEMENTS

STAKEHOLDER ENGAGEMENT

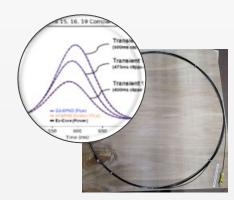
As a Crosscutting Technology Development (CTD) program, the Advanced Sensors and Instrumentation (ASI) program stakeholders encompass the broad range of Department of Energy (DOE), Office of Nuclear Energy's interests: the existing fleet, developers of advanced reactors and fuel developers.

- The adoption of advanced I&C technologies in the existing fleet is constrained by economic and regulatory aspects and addressed primarily by the Light Water Reactor Sustainability (LWRS) program in terms of <u>Plant Modernization</u>
- An important component of ASI mission is instrumenting irradiation experiment for fuels and materials qualification, such as Accident Tolerant Fuels, to accelerate the development process – stakeholders engagement in this space is already active through other NE programs, such as the <u>Advanced Fuel Campaign</u>

The focus of ASI engagement is directed primarily to developers of advanced reactors

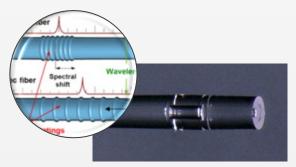
- As follow up to the GAIN/EPRI/NEI Sensor Technologies for Advanced Reactors Virtual Workshop (October 2020), ASI held a first round of one-to-one meetings to inform the program on stakeholders' priorities for I&C development (FY21 gap assessment). The following companies participated in this first assessment: Oklo, Terrapower, Westinghouse, Framatome, Flibe Energy, Radiant, NuScale, BWXT.
- Continued engagement with periodic updates has proven beneficial, adding Kairos, Terrestrial Energy and Copenhagen Atomics to the list of
 expanding contacts with active communication exchanges. Creating a formal Industry Advisory Board is being considered.

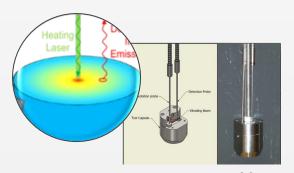
ASI actively engages with research and government organizations with interest in I&C technologies for advanced reactors


- EPRI and NRC are primary contacts, other organizations include NIST and University-based initiatives
- Engagement with international research organizations is established as part of existing collaborative agreements (CEA France, IFE Norway, SCK Belgium, JAEA Japan, KAIST/KAERI South Korea)

OVERVIEW APPLICATIONS R&D NEEDS ROADMAP IMPLEMENTATION

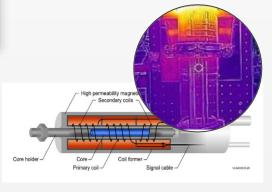
MISSION / VISION I&C DEFINITION STAKEHOLDER ENGAGEMENT LEGACY ACHIEVEMENTS




Self Powered Detectors and miniaturized Fission Chambers for local neutron flux measurement

LEGACY ACHIEVEMENTS

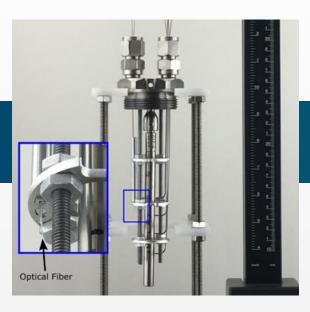
Over the course of the last 11 years, the <u>ASI program</u> has fostered the development and commercialization of a wide range of technologies spanning the inception of novel sensing methods and the enhancement of instrumentation with a long history of commercial utilization. The program has funded over \$58 million in RD&D which supports the US Department of Energy and the US DOE Office of Nuclear Energy missions. Sensors developed under the ASI program have been used to support other DOE-NE programs and have been commercialized for nuclear industry adoption.


Fiber optic sensors for nuclear applications

Real time measurement of fuel material properties in-core

High Temperature Irradiation Resistant (HTIR) thermocouples

Linear Variable Differential Transformer (LVDT) for fission gas pressure measurement

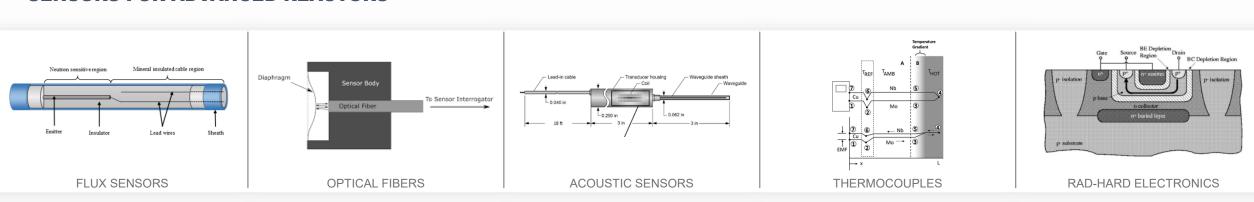

OVERVIEW	APPLICATION	IS	S R&D NEEDS		ROADMAP	IMPLEMENTATION
SENSORS FOR ADVANCED	D REACTORS	SE	ENSORS FOR IRRADIATION EXPERIMENT	ΓS	SENS	ORS INTEGRATION

APPLICATIONS: IDENTIFICATION OF TECHNOLOGY GAPS

The ASI program activities have been structured based on three types of applications:

Sensors for Advanced Reactors

Sensors for Irradiation Experiments



Sensors Integration

OVERVIEW	APPLICATIONS	S R&D NEEDS		ROADMAP	IMPLEMENTATION	
SENSORS FOR ADVANCE	SENSORS FOR ADVANCED REACTORS		ENTS	SENSORS INTEGRATION		
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS	Т	HERMOCOUPLES	RAD-HARD ELECTRONICS	

SENSORS FOR ADVANCED REACTORS

Sensors and instrumentation for advanced reactors focuses the research, development, deployment and commercialization activities to mature specialized sensors and instrumentation that address critical technology gaps for monitoring and controlling advanced reactors. Demonstration facilities are leveraged to evaluate readiness levels and enable stakeholders to adopt technology with minimal risk. Areas of interest are grouped based on the crosscutting resources unique in each category. These categories are flux sensors, optical fiberbased sensors, acoustic based sensors, thermocouples and radiation hardened electronics.

The following sections introduces the technological attributes of interest to the advanced reactor community including a summary of recognized technology gaps. These sections link to proposed R&D activities that will address these gaps and provide a roadmap to their implementation so that availability and impact may be clearly communicated to stakeholders.

OVERVIEW	APPLICATIONS	R&D NEEDS		ROADMAP	IMPLEMENTATION
SENSORS FOR ADVANCED	SENSORS FOR ADVANCED REACTORS SENSORS FOR IRRADIATION EXPER		TS	SENS	ORS INTEGRATION
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS	THI	ERMOCOUPLES	RAD-HARD ELECTRONICS

SENSORS FOR ADVANCED REACTORS: FLUX SENSORS

MEASUREMENTS	ATTRIBUTES	TECHNOLOGY GAPS
Thermal Neutron Flux (in-core)	 Response time: Delayed/Prompt Sizes (diameter): 0.062" to +3" 	Higher temperature compatibilityLong-duration testingMultipoint measurements
Fast Neutron Flux (in-core)	 Neutron Energy Range: 1- 20 MeV Response time: Delayed/Prompt Sizes (diameter): 0.062" to +3" 	Higher temperature compatibilityLong-duration testingMultipoint measurements
Gamma Flux (in-core)	 Gamma sensitive Sizes (diameter): 0.062" to +3" 	 Multipoint measurements Demonstration in conditions relevant to advanced reactors
Radiation detectors (power monitors)	 Response: Source range to Full Power Ex-core only Sizes (diameter): +3" Scalable to reactor power 	 Miniature size Customizability for first of a kind advanced reactor startup and qualification

OVERVIEW	APPLICATIONS	IS R&D NEEDS		ROADMAP		IMPLEMENTATION
SENSORS FOR ADVANCED REACTORS SE		ENSORS FOR IRRADIATION EXPERIMEN	TS	SENSORS INTEGRATION		
FLUX SENSORS	OPTICAL FIBERS		ACOUSTIC SENSORS	TH	HERMOCOUPLES	RAD-HARD ELECTRONICS

SENSORS FOR ADVANCED REACTORS: OPTICAL FIBERS

OPTICAL FIBER BASED MEASUREMENTS	ATTRIBUTES	TECHNOLOGY GAPS
Temperature	 Temperature Range: Application dependent, but generally <1000°C High sensitivity, rapid response Immune to electro- magnetic interference Small diameter, < 1 mm Multipoint/distributed measurement capability Potential for embedment in structures Multi-parameter sensing 	 Reliable, low-drift sensor performance under high temperature and radiation conditions Challenges with rugged packaging compatible with harsh in-core environments Long-duration validations of active compensation models Benchmarking of commercially available sensor performance for nuclear applications
Pressure		High temperature/radiation survivabilityLong-duration performance
Strain		 High temperature/radiation survivability Attachment procedures compatible with harsh environment Long-duration performance
Imaging (in-core)		 High temperature/radiation survivability In-core applicability of advanced imaging techniques Miniaturization of compatible lens system

OVERVIEW	APPLICATIONS	IS R&D NEEDS		ROADMAP		IMPLEMENTATION	
SENSORS FOR ADVANCED REACTORS			ENSORS FOR IRRADIATION EXPERIMENT	TS	SENSORS INTEGRATION		
FLUX SENSORS	OPTICAL FIBERS		ACOUSTIC SENSORS	TH	HERMOCOUPLES	RAD-HARD ELECTRONICS	

SENSORS FOR ADVANCED REACTORS: ACOUSTIC SENSORS

MEASUREMENTS	ATTRIBUTES	TECHNOLOGY GAPS		
Temperature	 Temperature Range: 0-3000°C Sizes (diameter): 0.01" to 0.062" High radiation tolerance Non-intrusive/non-destructive Materials selectable for environment 	 Calibration methodology Deployment in prototypic conditions Commercialization/availability 		
Pressure	Temperature Range: 0-500°CNon-intrusive/non-destructive	Incorporation of radiation resistant transducer materialsCalibration/temperature compensation strategy		
Flow	Temperature Range: 0-500°CNon-intrusive/non-destructive	Incorporation of radiation resistant transducer materialsCalibration/temperature compensation strategy		
Level	Temperature Range: 0-700°CLevel Range: 10's of metersMany methods/technologies available	 Demonstration in prototypic conditions Calibration methodology for new advanced reactor structures Nuclearization of commercial technologies 		
Acoustic Emission/Vibration	Temperature Range: 0-500°CNon-intrusivePassive measurement	 Demonstration in prototypic conditions Calibration methodology for advanced reactor structures Nuclearization of commercial technologies 		
Fluid Properties (Density, Viscosity, etc.) • Temperature Range: 0-500°C		 Demonstration in prototypic conditions Calibration methodology for new advanced reactor materials Nuclearization of commercial technologies 		

OVERVIEW	APPLICATIONS	R&D NEEDS	R&D NEEDS		IMPLEMENTATION	
SENSORS FOR ADVANCED REACTORS		SENSORS FOR IRRADIATION EXPERIM	SENSORS FOR IRRADIATION EXPERIMENTS		SENSORS INTEGRATION	
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS	Т	HERMOCOUPLES	RAD-HARD ELECTRONICS	

SENSORS FOR ADVANCED REACTORS: THERMOCOUPLES

MEASUREMENTS	ATTRIBUTES	TECHNOLOGY GAPS
Temperature	 Temperature Range: 0-1200°C Sizes (diameter): 0.0625" to 0.125" Relatively low absorption cross section (low drift) Fast response 	 High temperature/high radiation predictive drift model On-line calibration methodology High accuracy general use calibration
Surface temperature	 Temperature Range: 0-1600°C Sizes (diameter): 0.010" to 0.040" Fast response 	 Standardized attachment procedures Accuracy of transient response Performance validation
Internal temperature (e.g., fuel pellet)	 Temperature Range: 0-1600°C Sizes (diameter): 0.040" to 0.125" Relatively low absorption cross section (low drift) 	 Standardized installation procedures Performance validation

OVERVIEW	APPLICATIONS		R&D NEEDS		ROADMAP	IMPLEMENTATION
SENSORS FOR ADVANCED REACTORS		SE	SENSORS FOR IRRADIATION EXPERIMENTS		SENSORS INTEGRATION	
FLUX SENSORS	OPTICAL FIBERS		ACOUSTIC SENSORS	THERMOCOUPLES		RAD-HARD ELECTRONICS

SENSORS FOR ADVANCED REACTORS: RAD-HARD ELECTRONICS

ELECTRONICS	ATTRIBUTES	TECHNOLOGY GAPS
Passive Devices	Capacitance-based techniqueCables and interconnectsInductors and printed circuit boards	 High temperature/radiation survivability Long-duration testing in prototypic conditions
Discrete Active Devices	Diodes, LEDs, PhotodiodesTransistors (BJT, MOSFET, JFET)Wide bandgap devicesVacuum Devices	 High temperature/radiation survivability Long-duration testing in prototypic conditions
Integrated Circuits (IC)	 Voltage regulators and power devices Operational amplifiers Analog and digital converters Digital and mixed signals IC Data-links and communication interfaces 	 High temperature/radiation survivability Long-duration testing in prototypic conditions
Systems	 Imaging Systems (cameras, spectrometers) Power conversion and power harvesting systems Communications and controls Robots and remote operations 	 High temperature/radiation survivability Systems evaluations for deployment in advanced reactors systems

LED = Light-Emitting Diode

BJT = Bipolar Junction Transistor

OVERVIEW	APPLICATIONS		R&D NEEDS	ROADMAP		IMPLEMENTATION
SENSORS FOR ADVANCED REACTORS		SENSORS FOR IRRADIATION EXPERIMENTS		SENSORS INTEGRATION		
LINEAR VARIABLE DIFFERENTIAL TRANSFORMER		PASSIVE MONITORS		MATERIAL PROPERTIES CHARACTERIZATION		

SENSORS FOR IRRADIATION EXPERIMENTS

Sensors are required for irradiation experiments to collect data for scientific, engineering and controls purposes. The performance of these sensors often determines the success or failure of the experiment. A wide variety of sensors and sensor technologies are used in irradiation experiments, spanning the entire range of the technology readiness level (TRL) scale. Irradiation tests are also used as a platform to mature sensor technology, hence there is some overlap in the type of instruments used for the two application areas. In this document **sensors for irradiation experiments** refers solely to those specifically intended for irradiation experiments, with minimal or no potential use for reactor deployment. Irradiation experiments can be generally classified into 3 categories with different stakeholders:

- **Nuclear Fuel and Materials Qualification:** irradiation experiments designed to test the limits of nuclear fuel and cladding performance under design and off-design conditions. Most of these experiments are working toward the qualification of new fuel designs for the operating fleet (such as Accident Tolerant Fuel) and advanced reactors (such as TRISO). Primary stakeholders include advanced reactor companies, Advanced Fuel Campaign (AFC);
- Nuclear Materials Properties and Behavior testing: testing material properties and behavior under neutron irradiation, including advanced fuel materials and structural materials. The inclusion of instrumentation capable of providing real time measurement during irradiation can significantly accelerate the development process and reduce R&D costs. This area has significant scope synergy with material science research (ie, the Office of Basics Energy Sciences Center for Thermal Energy Transport under Irradiation) and modeling and simulation efforts(ie, NEAMS program);
- **Nuclear Component or Subsystem Testing:** The performance and reliability of nuclear components and subsystems are commonly evaluated in test reactors. These include subsets of reactor core components, heat removal systems, and loops. Stakeholders include advanced reactor companies, the Advanced Reactor Technology program and NASA nuclear programs such as Nuclear Thermal Propulsion and Fission Surface Power.

OVERVIEW	APPLICATIONS		R&D NEEDS	ROADMAP		IMPLEMENTATION
SENSORS FOR ADVANCED REACTORS		SENSORS FOR IRRADIATION EXPERIMENTS		SENSORS INTEGRATION		
LINEAR VARIABLE DIFFERENTIAL TRANSFORMER			PASSIVE MONITORS	MATERIAL PROPERTIES CHARACTERIZ		PERTIES CHARACTERIZATION

SENSORS FOR IRRADIATION EXPERIMENTS: LINEAR VARIABLE DIFFERENTIAL TRANSFORMERS (LVDT)

Linear Variable Differential Transformers (LVDT) are commonly used in many industrial applications for accurate measurements of displacement. In irradiation experiments LVDTs are utilized to measure several different properties by converting the measurand to displacement. Examples include measuring pressure through displacement of a bellows, or temperature through displacement of a component with well characterized thermal expansion. The Institute for Energy Technology (IFE) in Halden, Norway has been a reliable supplier of high temperature, radiation resistant LVDTs for irradiation experiments. However, the shutdown of the Institute material test reactor in 2019 threatens the availability of these component moving forward and an alternative supply chain should be established for Department of Energy activities. As a result, the ASI program is investigating domestically produced LVDTs to reinforce the supply chain.

ACTIVITIES	ATRIBUTES	TECHNOLOGY GAPS			
Pressure Sensing (plenum pressure, thermohydraulic conditions, cladding burst)	 Customizable pressure range Fast response time Small footprint (<10mm) No feed-through required 	 Custom engineering required for each application Supply chain uncertainty 			
Displacement (cladding elongation, fuel swelling, thermal expansion)	High temperatureHigh accuracy	 Measurement uncertainty is introduced by the radiation damage and thermal effects on the fixturing/support structure Supply chain uncertainty 			
Temperature (via thermal expansion)	Sensitivity is customized by the material thermally expanding	 Lacking a standardized design for reliable implementation Supply chain uncertainty 			

OVERVIEW	APPLICATIONS		R&D NEEDS	ROADMAP		IMPLEMENTATION
SENSORS FOR ADVANCED REACTORS		SENSORS FOR IRRADIATION EXPERIMENTS		SENSORS INTEGRATION		
LINEAR VARIABLE DIFFERENTIAL TRANSFORMER		PASSIVE MONITORS		MATERIAL PROPERTIES CHARACTERIZATION		

SENSORS FOR IRRADIATION EXPERIMENTS: PASSIVE MONITORS

Passive Monitors are ideal for irradiation experiments which do not require real-time data. The output of these sensors is determined during post irradiation examination (PIE). They can significantly reduce the cost of an experiment by eliminating the need for a data acquisition system and the design considerations required to get instrumentation leads out of the experiment and reactor vessel.

MEASUREMENT TECHNOLOGY	ATTRIBUTES	TECHNOLOGY GAP
Melt Wires	LeadlessSmall footprintMeasure irradiation temperatureRead out in PIE	 Traditional design is prohibitively large for many applications Melt-wire materials are difficult to determine if melting has occurred leading to increased measurement uncertainties
Silicon Carbide Monitors	LeadlessSmall footprintMeasures irradiation temperatureRead out in PIE	Readout techniques lack standardization, leading to uncertainty
Dosimetry	LeadlessSmall footprintMeasures neutron fluenceRead out in PIE	Miniaturization and neutron energy characterization in integrated packages

OVERVIEW	APPLICATIONS		R&D NEEDS	R&D NEEDS		IMPLEMENTATION
SENSORS FOR ADVANCED REACTORS		SENSORS FOR IRRADIATION EXPERIMENTS		SENSORS INTEGRATION		
LINEAR VARIABLE DIFFERENTIAL TRANSFORMER		PASSIVE MONITORS		MATERIAL PROPERTIES CHARACTERIZATION		

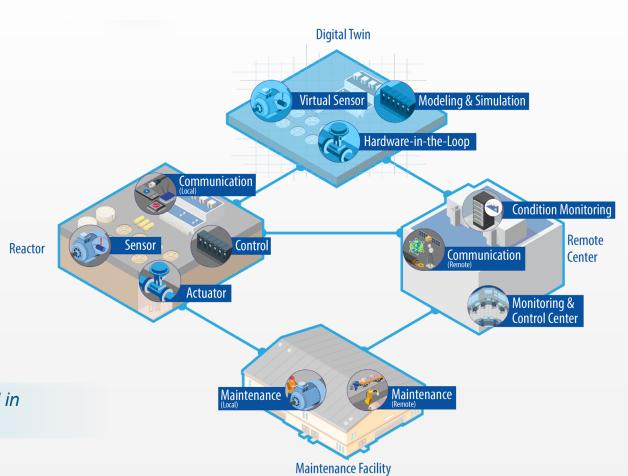
SENSORS FOR IRRADIATION EXPERIMENTS: MATERIAL PROPERTIES CHARACTERIZATION

MEASUREMENT	ATTRIBUTES	TECHNOLOGY GAP
Creep Characterization (Predominately for structural or cladding materials)	 In-pile creep of nuclear materials Capable of making accurate measurements in prototypic conditions 	Lacking in-pile qualification of system under prototypic conditions
Thermal Property Characterization	 Determination of thermal conductivity and diffusivity Contact & non-contact techniques Capability for solid fuel forms (oxide, metallic, TRISO, UN, UC, etc) Capability for liquids, in particular fuel bearing salts 	 Lack of demonstrated in-pile qualified techniques High temperature and radiation environment can degrade measurement systems and increase uncertainty. Currently lack the ability to perform high temperature in-pile thermal property measurements of liquids.
Strain Gauges	 Widely used in non-nuclear applications Standard technique for measuring mechanical strain Many secondary applications 	 High temperature behavior is limiting Radiation resistant attachments to nuclear relevant materials Long term qualification under prototypic conditions is missing
Crack Growth Characterization	Real-time measurement of crack propagation	Previous work has demonstrated feasibility and promising results, but lack a fully qualified in-pile measurement system

OVERVIEW	APPLICATIONS		R&D NEEDS	ROADMAP		IMPLEMENTATION
SENSORS FOR ADVANCED REACTORS		SENSORS FOR IRRADIATION EXPERIMENTS		SENSORS INTEGRATION		
DIGITAL TWIN		COMMUNICATION		ADVANCED CONTROLS		

SENSORS INTEGRATION: INTEGRATING SENSORS IN ADVANCED INSTRUMENTATION AND CONTROL SYSTEMS

Digital Twins introduce significant opportunities in:


- Enhanced anomaly detection
- System state quantification and predictions
- Improved AI/ML assisted control systems performance

Communications enable seamless integration of new technologies, network architectures and security options

Advanced Controls support introduction of:

- Performance-based control algorithms
- Fault-tolerant controls for semi-autonomous plant operation
- Artificial Intelligence and Machine Learning assisted solutions that improve plant performance utilizing operating history and physics-based models

Identifying and leveraging the use of high-fidelity digital twins is crucial in developing new advanced controls

OVERVIEW	APPLICATION	IS	R&D NEEDS	ROADMAP		IMPLEMENTATION	
SENSORS FOR ADVANCED	D REACTORS	SENSORS FOR IRRADIATION EXPERIMENTS			SENSORS INTEGRATION		
DIGITAL TWIN		COMMUNICATION			ADVANCED CONTROLS		

SENSORS INTEGRATION: DIGITAL TWIN

AREAS OF INTEREST	ATTRIBUTES	TECHNOLOGY / RESEARCH GAPS
Integrating models with algorithm	 Data sets and testbeds that are well-documented, integrated, and comparable Scalable Artificial Intelligence (AI) and Machine Learning (ML) methods applied to data sets that are spatially and temporally heterogeneous and unstructured 	 Develop the approach to integrate advanced control algorithms in nuclear digital twins Development of infrastructure, including common information models, reference data sets with annotation, and testbeds, that may be used for validating and qualifying data analytic methods.
Scalable algorithms for anomaly detection	 Artificial Intelligence (AI) and Machine Learning (ML) technologies for anomaly detection, that operate on streaming data and are explainable 	 Fundamental anomaly detection R&D for explainable algorithm development in scalable, assured AI/ML, including physics-informed ML.
System state quantification and prediction	 ML/Al technologies for prediction and decision making that quantify their uncertainty, are verified and validated, and identify the bounds of their expertise 	 Methods to quantify the uncertainty associated with the algorithm output as well as methods for identifying meaningful latent variables that may be used to explain the results from the ML/Al algorithms Develop risk-informed methods and uncertainty analyses to manage automation responses to plant conditions
Technologies for human- machine interaction	 Advanced human-machine interfaces to ensure transition from manual operation to autonomous operation workload is properly allocated and situational awareness is maintained 	 Human factors studies are needed to understand the altered manmachine interface and to ensure workload is properly allocated Evaluate altered role of the human responsible for operation of the advanced automation approach

OVERVIEW	APPLICATION	IS	R&D NEEDS		ROADMAP	IMPLEMENTATION
SENSORS FOR ADVANCED	O REACTORS	SENSORS FOR IRRADIATION EXPERIMENTS			SENSORS INTEGRATION	
DIGITAL TWIN		COMMUNICATION		ADVANCED CONTROLS		

SENSORS INTEGRATION: COMMUNICATION

AREAS OF INTEREST	ATTRIBUTES	TECHNOLOGY GAPS
Wireless	Develop multiband wireless communication technologies that support easy deployment and modification to meet growing needs of plant site, scalable to accommodate new technologies to enable seamless integration and co-existence, and customize network architecture and security options	 Communication requirements for advanced reactors based on design and operating conditions Communication framework supporting multi-band frequency network architecture Testbed to qualify and validate multiband network architecture
Wired	Supports deployment of fiber optic-based communication for safety and non-safety related functions within nuclear facilities.	 Approach to minimize radiation-induced aging of optical fibers, Fiber materials that have stable structural properties when exposed to high radiation and high temperature Validation of fiber-optic-based communication for safety-related functions within nuclear facilities.
Passive	Supports effective non-intrusive means of data communication from inside of the reactor to the outside of reactor	Qualification of passive communication techniques that support the transmission of information through plant structures and components

OVERVIEW	APPLICATION	IS	R&D NEEDS	R&D NEEDS		IMPLEMENTATION	
SENSORS FOR ADVANCED REACTORS			ENSORS FOR IRRADIATION EXPERIMENT	TS	SENSORS INTEGRATION		
DIGITAL TWIN		COMMUNICATION			ADV	ANCED CONTROLS	

SENSORS INTEGRATION: ADVANCED CONTROLS

AREAS OF INTEREST	ATTRIBUTES	TECHNOLOGY GAPS
High Performance Controls	Performance-based control algorithms	 Safety analysis supporting the transition of actions from operators to automation Validated high-performance control systems employing sophisticated model-based control algorithms
Artificial Intelligence (AI) / Machine Learning (ML) Assisted Controls	 Integrates advanced control algorithms and nuclear digital twins Optimal control for dispatch and unit commitment 	 Artificial intelligence methods for achieving semi-autonomous and autonomous operations Economic optimization controls systems Al/ML assisted solutions that improve plant performance utilizing operating history and physics-based models

OVERVIEW	APPLICATIONS	ICATIONS R&D		NEEDS	ROADMAP			IMPLEMENTATION
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS		THERMOCOUPLES RAD-HARD ELECTRON		ICS	LVDT	
PASSIVE MONITORS	MAT. PROP.		DIGITAL TWIN		COMMUNICATION			ADVANCED CONTROLS

RESEARCH AND DEVELOPMENT NEEDS: PLANNED ACTIVITIES

Planned R&D activities address the technology gaps identified for each section of the program focus areas and draw from a broad range of disciplines to support the development of Instrumentation and Control solutions:

Resilient, real-time transmission of sufficient amount of data for online monitoring and advanced data analytics

Communication

Sensor Performance Modeling

Modeling of instrumentation performance to enable predictive capabilities and integration in Digital **Twins**

Machine learning and artificial intelligence processes to enable semi-autonomous operation and maintenance by design

Big data, Machine earning, Artificial Intelligence

Sensors and Instrumentation

Reliable, cost-effective, realtime, accurate, and highresolution measurement of the performance of existing and advanced reactors core and plant systems

Advanced Control Systems

Material Science

Innovative sensor materials and advanced manufacturing techniques applied to instrumentation design and fabrication

Enable near real-time control of plant or experiments process variables to enhance performance

OVERVIEW	APPLICATION	ATIONS R&D		NEEDS	ROADMAP			IMPLEMENTATION
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS		THERMOCOUPLES RAD-HARD ELE		RAD-HARD ELECTRON	ICS	LVDT
PASSIVE MONITORS	MAT. PROP.	DIG		AL TWIN		COMMUNICATION		ADVANCED CONTROLS

FLUX SENSORS

TECHNOLOGY	NEEDED R&D
Self-Powered Detectors (SPDs)	 Benchmark commercial sensors for high temperature compatibility up to 800°C including active temperature compensation technique Design and fabricate SPDs sensitive to higher energy neutron flux and gamma flux Perform prototypic testing in conditions to demonstrate use for advanced reactor power control
Fission Chambers	 Benchmark commercial sensors for high temperature compatibility up to 400°C including calibration procedures Provide compact fission chamber capability of operating above 400°C and demonstrate performance in prototypic conditions
Micro Pocket Fission Detectors (MPFDs)	Provide long-duration performance testing to develop calibration procedures, measure signal drift and demonstrate high temperature compatibility
Gamma Thermometers	 Benchmark commercial sensors for high temperature compatibility up to 800°C including calibration procedures Testing in prototypic conditions for advanced reactor power monitoring
Ion Chamber	Testing in prototypic conditions for advanced reactor power monitoring

OVERVIEW	APPLICATION	IS	R&D NEEDS			ROADMAP	IMPLEMENTATION
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS		THERMOCOUPLES		RAD-HARD ELECTRON	IICS LVDT
PASSIVE MONITORS	MAT. PROP.		DIGITA	DIGITAL TWIN		OMMUNICATION	ADVANCED CONTROLS

OPTICAL FIBERS

TECHNOLOGY	NEEDED R&D
Temperature Sensing	 Development of active compensation techniques for sensor drift of intrinsic fiber optic sensor Demonstration in prototypic conditions for advanced reactors Demonstration of sensor reliability at high temperature and high radiation Benchmark commercial based sensors and define limitations for their use in high temperature and radiation environments based on an acceptable measurement uncertainty
Pressure Sensing	 Long term demonstration of performance at elevated temperatures Optimize Fabry-Perot based sensor for high dose applications Testing under prototypic cases for deployment in advanced reactors to determine compatibility with targeted applications (sodium, molten salt, radiation & temperature)
Strain Sensing	 Demonstration of sensor in prototypic conditions Development of use-cases for deployment in advanced reactors
In-core Imaging	 In-core demonstration of imaging system Demonstration of the in-pile system use for high temperature thermography and related applications (crack detection/defect formation, structural health monitoring) in a gas environment Development of a system Collect high quality out-of-pile images with system used in-pile to determine feasibility of digital image correlation and particle image velocimetry with fiber bundle system.

OVERVIEW	APPLICATION	NS R&D NI		NEEDS		ROADMAP	IMPLEMENTATION
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS		THERMOCOUPLES		RAD-HARD ELECTRON	ICS LVDT
PASSIVE MONITORS	MAT. PROP.	DIGITA		L TWIN	COMMUNICATION		ADVANCED CONTROLS

ACOUSTIC SENSORS

TECHNOLOGY	NEEDED R&D
Ultrasonic Thermometer	 Develop specialized electronics and data acquisition to provide real-time temperature readout for simplified adoption into experiments/commercialization Optimize fabrication techniques for commercialization Characterize performance of updated system and demonstrate performance under relevant conditions
Ultrasonic Pressure Sensor	 Identify and characterize performance of high temperature radiation tolerant transducer materials and characterize material compatibility for anticipated deployment environments Assess adoption and modification of commercial ultrasonic pressure sensors Develop temperature compensation strategy and perform in-lab testing and design refinement under prototypic conditions
Ultrasonic Flow Sensor	 Assess adoption and modification of commercial ultrasonic flow sensors Develop temperature compensation strategy and perform in-lab testing and design refinement under prototypic conditions
Ultrasonic Level Sensor	 Assess adoption and modification of commercial ultrasonic level sensors Perform in-lab testing and design refinement under prototypic conditions
Acoustic Emission/Vibration Sensor	 Assess adoption and modification of commercial acoustic sensors Develop calibration methodology and demonstrate in prototypic conditions

OVERVIEW	APPLICATION	APPLICATIONS		R&D NEEDS		ROADMAP	IMPLEMENTATION	
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS		THERMOCOUPLES RA		RAD-HARD ELECTRON	ICS LVDT	
PASSIVE MONITORS	MAT. PROP.	MAT. PROP.		DIGITAL TWIN		OMMUNICATION	ADVANCED CONTROLS	

THERMOCOUPLES

TECHNOLOGY	NEEDED R&D
High Temperature Irradiation Resistant Thermocouples (HTIR-TC)	Develop, test and implement real-time drift models for advanced reactor conditions
Intrinsic Junction Thermocouples	 Installation on relevant materials for advanced reactor components Assess real-time performance and related material interactions
Conventional/multi-point/coaxial Thermocouples	 Develop, test and implement real-time drift models for advanced reactor conditions Uncertainty quantification of multi-point measurement

OVERVIEW	APPLICATION	NS	R&D NEEDS		ROADMAP			IMPLEMENTATION	
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS		THERMOCOUPLES		RAD-HARD ELECTRONICS		LVDT	
PASSIVE MONITORS	MAT. PROP.	•	DIGITAL TWIN		COMMUNICATION			ADVANCED CONTROLS	

RAD-HARD ELECTRONICS

TECHNOLOGY	NEEDED R&D
Gallium Nitride (GaN) Integrated Circuits (ICs)	 Fabrication of radiation hard, high temperature ICs Demonstration of reliability at high temperature and high radiation
Joint Field Effect Transistor (JFET) technology applied to Front end digitizer (FREND) for optical fiber data transmission	 Fabrication and demonstration of prototype acquisition system Implementation of rad-hard circuits Demonstration of radiation hardness in irradiation experiment

OVERVIEW	APPLICATIONS		R&D NEEDS		ROADMAP		IMPLEMENTATION	
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS		THERMOCOUPLES		RAD-HARD ELECTRON	NICS LVDT	
PASSIVE MONITORS	MAT. PROP.		DIGITAL TWIN		COMMUNICATION		ADVANCED CONTROLS	

LVDT

TECHNOLOGY	NEEDED R&D
Pressure Sensing	 Engineer a set of standardized configurations coupled with a bellows for key applications (determining operating pressure and temperature range) Quantify the high temperature and irradiation resistance of potential alternatives to Halden supplied LVDTs. Qualify commercially available LVDT/bellows systems for pressure measurements
Displacement	 Establish an optimized fixturing/support methodology to minimize measurement uncertainty introduced by nuclear and thermal effects Quantify the high temperature and irradiation resistance of potential alternatives to Halden supplied LVDTs.
Temperature	 Establish an standardized design for implementing a thermal expansion based temperature measurement using LVDTs Qualify this design through laboratory and in-pile testing

OVERVIEW	APPLICATION	IS	R&D NEEDS		ROADMAP		IMPLEMENTATION	
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS		THERMOCOUPLES		RAD-HARD ELECTRON	ICS LVDT	
PASSIVE MONITORS	MAT. PROP.		DIGITAL TWIN		COMMUNICATION		ADVANCED CONTROLS	

PASSIVE MONITORS

TECHNOLOGY	NEEDED R&D
Silicon Carbide	 Conduct round robin study on readout methodologies from a common set of silicon carbide samples Establish standardized readout methodology documented by ASTM Evaluate advanced readout capability technologies and quantify associated uncertainties
Melt Wires	 Miniaturize packaging of melt wires by utilizing additive manufacturing Standardize readout method for specific melt wire materials Develop advanced readout capability to reduce ambiguity of measurement and performer subjectivity. Potential advanced readout methods include Enhanced visual readout, X-ray CT, and electrical interrogation
Dosimetry	Establish additive manufactured dosimetry capability enabling directional & spectrum unfolding capability

OVERVIEW	APPLICATION	NS	R&D NEEDS		ROADMAP		IMPLEMENTATION	
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS		THERMOCOUPLES		RAD-HARD ELECTRON	ICS LVDT	
PASSIVE MONITORS	MAT. PROP.	MAT. PROP.		DIGITAL TWIN		OMMUNICATION	ADVANCED CONTROLS	

MATERIAL PROPERTIES CHARACTERIZATION

TECHNOLOGY	NEEDED R&D
Creep Testing	In-pile demonstrate the system under prototypic conditions
Thermal Property Characterization	 In pile demonstration of techniques under prototypic condition coupled Further development of both contact and non-contact techniques for advanced thermal property characterization Develop methodology and infrastructure for thermal property measurements of liquids
Strain gauges	 Benchmarking long term performance under prototypic conditions Develop advanced manufactured strain gauges for improved performance Benchmark advanced manufactured strain gauges to traditional high temperature strain gauges
Crack Growth	Complete the qualification of a standardized design for in-pile measurement of crack growth propagation

OVERVIEW	APPLICATIONS		R&D NEEDS		ROADMAP			IMPLEMENTATION	
FLUX SENSORS	OPTICAL FIBERS	ACOUSTIC SENSORS		THERMOCOUPLES RAD-HARD ELECTRO		ICS	LVDT		
PASSIVE MONITORS	MAT. PROP.	MAT. PROP.		DIGITAL TWIN		COMMUNICATION		ADVANCED CONTROLS	

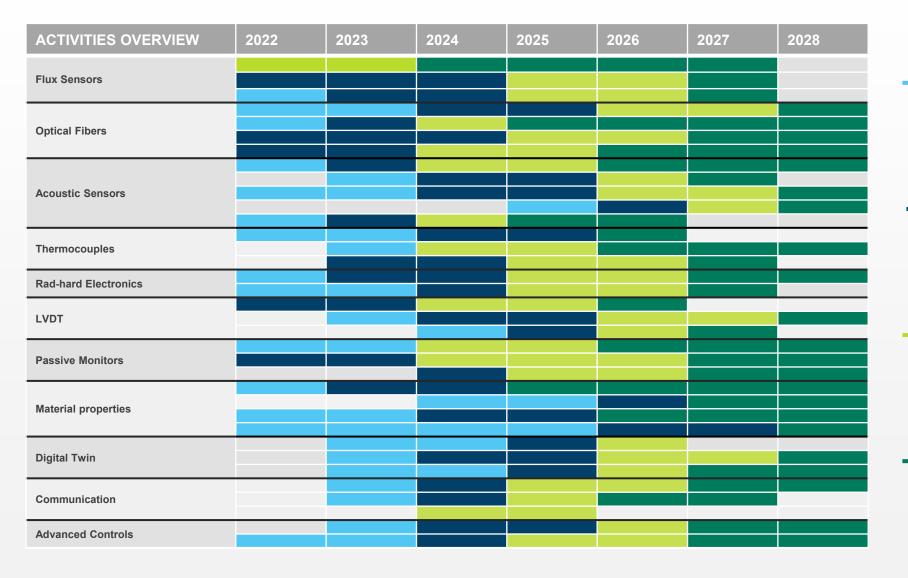
DIGITAL TWIN

TECHNOLOGY	NEEDED R&D
Models	Develop prototypic plant models of simplified nuclear systems
Algorithms	 Develop algorithms to demonstrate system state quantification Develop prototypic algorithms for anomaly detection Develop algorithms that incorporate explainability (explainable AI) Develop and demonstrate generalizability of algorithms Demonstration of methods for assured ML/AI
Data, Tools & Test Beds	 Data sustainability policies and best practices An annotated initial set of benchmark data sets from a subset of nuclear facilities published online Set of ML/AI tools with standardized interfaces, capable of leveraging DOE HPC facilities Guidance/best practices for testbeds for demonstrating and qualifying ML/AI-enabled digital twins and semi-autonomous operations Sustainable access to benchmark data sets, testbeds, and tool suites for existing and new application domains in nuclear energy, along with consensus standards and best practice documents for the application of ML/AI to address needs in nuclear system O&M, and nuclear fuel cycle processes

OVERVIEW	APPLICATIONS		R&D NEEDS		ROADMAP		IMPLEMENTATION	
FLUX SENSORS	OPTICAL FIBERS	ACOUS	STIC SENSORS	THERMOCOL	PLES RAD-HARD ELECTRONICS		NICS LVDT	
PASSIVE MONITORS	MAT. PROP.		DIGITAL TWIN		COMMUNICATION		ADVANCED CONTROLS	

COMMUNICATION

TECHNOLOGY	NEEDED R&D
Wireless Communications	 Develop multi-band frequency network architecture Model electronics system to support their design, to evaluate the performance under different operating conditions Develop metrics to evaluate resilience, reliability (data availability), latency, coverage, connectivity, and throughput of a network prototype under different operating condition Develop a testbed to validate multiband network architecture to demonstrate and qualify multi-frequency communication Provide guidance/best practices for installation of wireless infrastructure at a plant site
Passive Communication	Produce computational model to design inductive coupling communication and to better understand its merits and demerits to support in-pile or near vessel communication
Wired Communication	Establish testbed to support non radio frequency communication that includes fiber optics and induction- based transmission


OVERVIEW	APPLICATIONS		R&D NEEDS		ROADMAP			IMPLEMENTATION	
FLUX SENSORS	OPTICAL FIBERS	ACOUS	STIC SENSORS	THERMOCOL	JPLES RAD-HARD ELECTRO		ICS	LVDT	
PASSIVE MONITORS	MAT. PROP.		DIGITAL TWIN		COMMUNICATION			ADVANCED CONTROLS	

ADVANCED CONTROLS

TECHNOLOGY	NEEDED R&D
High Performance	 Develop and demonstrate a High Performance Control System simulation platform Human factors framework for understanding the role of the human in plants using High Performance Control Systems
AI/ML Assisted	 Human factors principles that enable situational awareness in AI/ML assisted controls operating environments Control strategies that improve performance by making use of methodologies that combine operating-data-based machine-learning models and physics-based models to improve knowledge of plant condition Hardware-in-the-loop demonstration of robust autonomous control of a reference nuclear system. Supervisory and artificial intelligence control architectures that support reactors with multiple product streams and energy storage systems for load leveling

	OVERVIEW	I		APPLICATIONS			R&D NEEDS	ROADMAP ROADMAP			IMF	PLEMENTATION
FLUX	OPTICAL FIBERS	ACOUSTIC S	SENSORS	THERMOCOUPLES	RAD-HARD	LVDT	PASSIVE MONITORS	MAT. PROP.	DIGITAL TWIN	COMM	IUNICATION	ADVANCED CONTROLS

Development

Identification and research of needs, applications, functional requirements and complete feasibility demonstration

Testing

Performance assessment and design optimization under relevant conditions

Qualification

Demonstration through benchmarking using relevant methods and/or facilities

Deployment

Transition to end-user applications and/or commercialization partners

	OVERVIEW	1		APPLICATIONS			R&D NEEDS ROADMAP				IMI	PLEMENTATION
FLUX	OPTICAL FIBERS	ACOUSTIC S	ENSORS	THERMOCOUPLES	RAD-HARD	LVDT	PASSIVE MONITORS	MAT. PROP.	DIGITAL TWIN	COMM	IUNICATION	ADVANCED CONTROLS

ROADMAP: FLUX SENSORS

R&D Activity	2022	2023	2024	2025	2026	2027	2028
Self Powered Neutron	Develop temperature co	ompensation tools	Deploy in advanced i	reactors demonstration fa	cilities		
Detectors (SPND)			Develop neutron spe	ctral unfolding tools	Qualify SPNDs for fast reactors		
Fission Chambers	Cross calibration of in-c Micro-Pocket Fission D irradiation tests	ore fission chambers, etectors (MPFDs) with S	PDs in heated	Qualification of miniature core fission chambers for power measurement are	Establish commercial supply chain		
Gamma detectors	Develop optical fiber- based gamma thermometer (OFBGT)	Test gamma thermome ion chambers at high te		Qualify gamma thermolion chambers against e reactor power measure	xternal detectors for	Establish commercial supply chain	

Development Qualification Deployment Deployment

	OVERVIEW			APPLICATIONS		F	R&D NEEDS		ROADMAP		IMI	PLEMENTATION
FLUX	OPTICAL FIBERS	ACOUSTIC S	ENSORS	THERMOCOUPLES	RAD-HARD	RD LVDT PASSIVE MONITORS M		MAT. PROP.	DIGITAL TWIN	COMM	UNICATION	ADVANCED CONTROLS

ROADMAP: OPTICAL FIBERS

R&D Activity	2022	2023	2024	2025	2026	2027	2028
Active Compensation	Test sensor under gamma irradiation	Test sensor with mixed gamma irradiation	d neutron			Establish commercial s	supply chain
Active Compensation			Test active compensat intrinsic sensors	ion sensor with other	In-pile demonstration of coupled with intrinsic m	f active compensation neasurement capability	
	Complete testing in lov irradiation environmen						
Pressure Sensor		Extend high temperatu	re range operation	Deploy in advanced re	eactors demonstration fa	cilities	
			Long term testing in ra	diation environment			
In pile Imaging	Test design in gas env	ironment		In-pile demonstration of imaging techniques	of advanced	Deploy in advanced re	actors demonstration
In-pile Imaging		Test in water-based en	nvironment	Evaluate the use of fib DIC application	er bundles for PIV and	facilities	
Intrinsic temperature sensing	Distributed sensing in l dose environments	nigh temperature, low	Benchmarking of comr sensor to determine op		Deploy in advanced re	actors demonstration fa	cilities

Development Qualification Deployment Deployment

	OVERVIEW	1		APPLICATIONS		F	R&D NEEDS	D NEEDS ROADMAP			IM	PLEMENTATION
FLUX	OPTICAL FIBERS	ACOUSTIC S	ENSORS	THERMOCOUPLES	RAD-HARD	LVDT	PASSIVE MONITORS	MAT. PROP. DIGITAL TWIN COMM		СОММ	UNICATION	ADVANCED CONTROLS

ROADMAP: ACOUSTIC SENSORS

R&D Activity	2022	2023	2024	2025	2026	2027	2028
I litura a mia tha uma a mastau	Improve fabrication methods	Characterize updated design	Danaharank madamasana		Doubovin odvonosal voset	d	
Ultrasonic thermometer	Develop custom electronic acquisition system	cs and data	Benchmark performance		Deploy in advanced reacto	ors demonstration facilities	
Ultrasonic		Assess adoption and modification of commercial sensors	Perform benchtop testing	and design optimization	Benchmark performance of	Establish commercial	
pressure sensor		Explore high temperature radiation tolerant transducer materials	Develop methods for temperature compensation	Characterize material compatibility	developmental and commercial sensors	supply chain	
	Assess adoption and mod		Perform benchtop testing	and design optimization			Deploy in advanced
Ultrasonic flow sensor	sensors to advance reactor intrusiveness technologies		Develop methods for temperature compens	ation	Demonstrate under releva	nt conditions	reactors demonstration facilities
Ultrasonic level sensor				Assess adoption and modification of commercial sensors	Perform benchtop testing and design optimization	Demonstration in prototypic conditions	Establish commercial supply chain
Acoustic Emission/	7 tobood adoption and	Perform benchtop testing and design optimization	Demonstration				
Vibration sensor	modification of		in prototypic conditions	Deploy in advanced reactors	s demonstration facilities		

	OVERVIEW	1		APPLICATIONS		F	R&D NEEDS ROADMAP				IMF	PLEMENTATION
FLUX	OPTICAL FIBERS	ACOUSTIC S	ENSORS	THERMOCOUPLES	RAD-HARD	LVDT	PASSIVE MONITORS	MAT. PROP.	DIGITAL TWIN	COMM	UNICATION	ADVANCED CONTROLS

ROADMAP: THERMOCOUPLES (TCs)

R&D Activity	2022	2023	2024	2025	2026	2027	2028
High Temperature Irradiation Resistant Thermocouples (HTIR-TCs)	mocouples reactors		Demonstration of drift conditions	model in prototypical	Establish commercial supply chain		
(111111-105)	Heat treatment optimiz	zation			Citalii		
		Develop fabrication advanced nuclear fu					
Intrinsic junction thermocouples			Assess real-time perfo	ormance	Deploy in advanced re	eactors demonstration f	acilities
Conventional, multi-point and coaxial thermocouples		Uncertainty quantific measurement	cation of multi-point	Benchmarking and	reliability assessment	Establish commercial supply chain	

Development Control Co

	OVERVIEW	1		APPLICATIONS		F	R&D NEEDS ROADMAP				IMI	PLEMENTATION
FLUX	OPTICAL FIBERS	ACOUSTIC S	ENSORS	THERMOCOUPLES	RAD-HARD	LVDT	PASSIVE MONITORS	MAT. PROP.	DIGITAL TWIN	COMM	IUNICATION	ADVANCED CONTROLS

ROADMAP: RAD-HARD ELECTRONICS

R&D Activity	2022 2023		2024	2025 2026		2027	2028
Gallium Nitride (GaN)	Design and fabricatio	n			Establish commercial	supply chain	
integrated circuits (ICs)		Test in prototypical co	onditions	Demonstration of relia	ability		
Fiber optic front end digitizer (FREND)	Fabrication of prototype acquisition system		Implementation of rad-hard ICs	Benchmarking of ope irradiation experimen		Establish commercial	supply chain

	OVERVIEW	1		APPLICATIONS		F	R&D NEEDS ROADMAP				IMF	PLEMENTATION
FLUX	OPTICAL FIBERS	ACOUSTIC S	ENSORS	THERMOCOUPLES	RAD-HARD	LVDT	PASSIVE MONITORS	ASSIVE MONITORS MAT. PROP. DIGITAL TWIN COMMU		COMMUN	NICATION	ADVANCED CONTROLS

ROADMAP: LINEAR VARIABLE DIFFERENTIAL TRANSFORMER (LVDT)

R&D Activity	2022	2023	2024	2025	2026	2027	2028
LVDT supply chain assessment	Furnace based testing	g	Test in prototypical conditions		Establish commercial supply chain		
LVDT-based Pressure sensor		Design and fabricate standardized configuration	Furnace and initial irr testing of design	adiation-based	In-pile Qualification to pressure sensor		Deploy for advanced reactors fuels and materials demonstration
High Temperature Measurement			Design of sensor feasibility testing	Laboratory Furnace Testing	In-Pile Qualification	Deploy for advanced reactors fuels and materials demonstration	

Development Qualification Deployment Deployment

	OVERVIEW	OVERVIEW APPLICATIONS				F	R&D NEEDS	ROADMAP			IMPLEMENTATION	
FLUX	OPTICAL FIBERS	ACOUSTIC S	ACOUSTIC SENSORS THERMOCOUPLES		RAD-HARD	LVDT	PASSIVE MONITORS	MAT. PROP.	DIGITAL TWIN	COMMU	JNICATION	ADVANCED CONTROLS

ROADMAP: PASSIVE MONITORS

R&D Activity	2022	2023	2024	2025	2026	2027	2028	
	Miniaturization throug	h printing						
Melt Wires		Develop advanced re	adout capability					
			Establish a standard wire materials	for readout of melt	Deploy for advanced	nced reactors fuels and materials demonstratio		
Silicon Carbide	Benchmarking existir readout capabilities	ng	Establish ASTM stand	dard for SiC temperatu	re monitors	Deploy for advanced materials demonstrati		
Advanced Dosimetry			Advanced Manufacturing of dosimetry coupons	Benchmark to tradition	nal Dosimetry	Deploy for advanced materials demonstrati		

Development Qualification Deployment Deployment

Development

Deployment

	OVERVIEW			APPLICATIONS		F	R&D NEEDS ROADMAP				IMF	PLEMENTATION
FLUX	OPTICAL FIBERS	ACOUSTIC S	OUSTIC SENSORS THERMOCOUPLES		RAD-HARD	LVDT	PASSIVE MONITORS	MAT. PROP.	DIGITAL TWIN	COMMU	JNICATION	ADVANCED CONTROLS

ROADMAP: MATERIAL PROPERTIES CHARACTERIZATION

R&D Activity	2022	2023	3 2024		2026	2027	2028
Thermal conductivity for solid nuclear fuel	Line source method development	Line Source In-pile on U10Zr fuel spec	(ATR) demonstration cimens	Deploy for advanced	reactors fuels and		
and materials	Photothermal radiometry development		ometry In-pile (MITR) a variety of materials	materials demonstrat	ion		
Thermal conductivity of liquids (fueled molten salt and high temperature coolants)			Measurement techniq	ue development	Benchtop testing	Deploy for advanced materials demonstrat	
Strain Gauges	Benchtop benchmarking additively manufactured high temperature applic	strain gauges for	Testing of high tempe in prototypical condition		Qualification of strain Application of strain of Health Monitoring of	gauges to Structural	Deploy in advanced reactors demonstration
			n gauges to Structural F reactors components	lealth Monitoring of	reactor components	auvanceu nucieai	facilities
Methods for in-core	LVDT-based creep test	rig development	In-core testing of LVD measurement method	•	Deploy for advanced	reactors fuels and mat	erials demonstration
measurement of creep and crack growth			LVDT-based crack growth test rig development		In-core testing of LVI growth measurement		Deploy for advanced reactors fuels and materials demonstration

Qualification

Testing

	OVERVIEW	1		APPLICATIONS	ONS R&D NEEDS ROADW			ROADMAP		MPLEMENTATION	
FLUX	OPTICAL FIBERS	ACOUSTIC S	JSTIC SENSORS THERMOCOUPLES F		RAD-HARD	LVDT	PASSIVE MONITORS	MAT. PROP.	DIGITAL TWIN	COMMUNICATION	ADVANCED CONTROLS

ROADMAP: DIGITAL TWIN

R&D Activity	2022	2023	2024	2025	2026	2027	2028
Madala		Develop plant models of a simplified nuclear system	Test plant models of simplified nuclear for use in adv controls	Qualify simplified plant models			
Models			Develop plant models of advanced nuclear system	Test plant models of nuclear for use in adv controls	Qualify advanced plant models		
		Develop algorithms that incorporate explainability	Test generalizability of algo	prithms			Deploy explainable ML/Al for anomaly
Algorithms		Develop prototypic algorithms for anomaly detection	Test anomaly detection algorithms	Qualify anomaly detection algorithms	Qualify methods for assure	ed ML/AI	detection in advanced reactors demonstration facilities
Data, Tools &		Annotated initial set of benchmark data sets from a subset of nuclear facilities published online	Develop ML/AI tools with standardized interfaces	Test ML/Al-enabled digital twins for semi-	Qualify digital twin test beds supporting adv	Deploy digital twin test bed	l in advanced reactors
Test Beds		Data sustainability policies and best practices	Develop Guidance and best practices for test beds	autonomous operations	controls testing	demonstration facilities	

Development Qualification Qualification Deployment

	OVERVIEW	1		APPLICATIONS		F	R&D NEEDS		ROADMAP		IMPLEMENTATION	
FLUX	OPTICAL FIBERS	ACOUSTIC S	USTIC SENSORS THERMOCOUPLES F		RAD-HARD	LVDT	PASSIVE MONITORS	MAT. PROP.	DIGITAL TWIN	СОММ	UNICATION	ADVANCED CONTROLS

ROADMAP: COMMUNICATION

R&D Activity	2022	2023	2024	2025	2026	2027	2028	
Wireless		Develop multi-band frequency network architecture	Test multi-band frequency network architecture		Develop guidance and best practices for installation of wireless infrastructure at a plant	Deploy multi-band netw		
			Develop metrics to evaluate network prototypes	Qualify multi-band network architecture		advanced reactors demonstration facilities		
Passive	Develop computations model to design inductive coupling communication		Test inductive coupling communication	Qualify inductive coupling communication	Deploy inductive coupl advanced reactors dem			
Wired			Qualify non-radio freque that includes fiber optics based transmission					

Development Qualification Deployment

	OVERVIEW	/		APPLICATIONS			R&D NEEDS ROADMAP				IMPLEMENTATION		
FLUX	OPTICAL FIBERS	ACOUSTIC S	OUSTIC SENSORS THERMOCOUPLES		RAD-HARD	LVDT	PASSIVE MONITORS	MAT. PROP.	DIGITAL TWIN	COMMU	JNICATION	ADVANCED CONTROLS	

ROADMAP: ADVANCED CONTROLS

R&D Activity	2022	2023	2024	2025	2026	2027	2028
		Develop a High- Performance Control System Simulation Platform	Test High Performance Control Systems Simulation Platform	Qualify a High- Performance Control Simulation Platform	Qualify High- Performance	Danlay High Parformance	Controls in advanced
High Performance			Develop High- Performance Controls using simulation platform	Test High-Performance Controls using simulation platform	Controls using simulation platform	Deploy High-Performance Controls in advanced reactors demonstration facilities	
AI-ML Assisted	Develop the approach to integrate advanced control algorithms in nuclear digital twins	Develop control strategies that combine operating-data-based machine-learning models and physics- based models	Test Human factors principles that enable situational awareness in AI/ML assisted controls operating environments	Qualify Hardware-in-the-lo of robust autonomous con nuclear system		Deploy AI/ML assisted co reactors demonstration fa	
		Develop Supervisory and that support reactors with and energy storage system	multiple product streams				

OVERVIEW		APPLICATIONS	R&D N	IEEDS	ROADMAP	IMPLEMENTATION		
PERSONNEL		PROGRAM SYNE	RGIES	PROGR	AM RESOURCES	AVENUES / FOAs		

IMPLEMENTATION

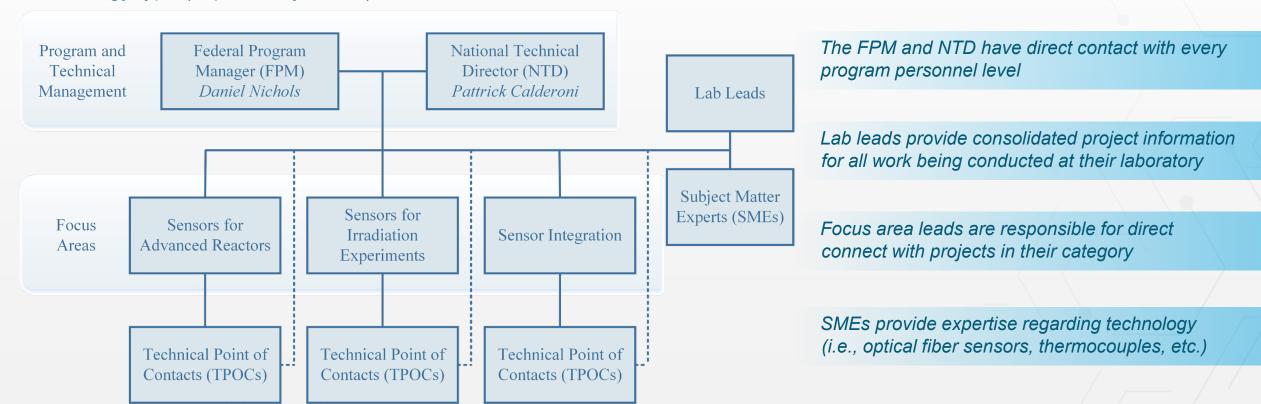
There are several key components of the ASI program building the foundation of performing successful research:

ASI Program Personnel | Congruent Program Synergies | ASI Program Resources | Research Avenues and FOAs

ASI Program Personnel provides the structure to streamline coordination among the program leadership, focus area leads, principal investigators, and subject matter experts. Program personnel currently include National Laboratory experts from ANL, INL, ORNL and PNNL, subject matter experts (SMEs), and several distinguished universities.

Congruent Program Synergies with other Federal agencies and DOE programs helps to strengthen technology development and improve use case deployment. Continuous and active engagement will other programs allows for coordination of scope to achieve the DOE-NE mission.

ASI Program Resources such as the irradiation test facilities, sensor qualification processes, national laboratories, universities and industry partners helps to combine technical expertise and human capital to accelerate technology development.


Research Avenues and Funding Opportunity Announcements (FOAs) provide methods to engage with the National Laboratories, universities and industry partners through both competitive and non-competitive mechanisms to pursue research and development (R&D).

OVERVIEW		APPLICATIONS	R&D NEEDS		ROADMAP		IMPLEMENTATION
PERSONNEL PROGRAM SY		PROGRAM SYNE	RGIES	PROGR	AM RESOURCES		AVENUES / FOAs

PERSONNEL

The program personnel structure is designed to provide consolidated information to the program management to analyze progress and to connect project across different cross-sectional domains. Therefore, the program can be reviewed from the standpoint of down stream stakeholders (captured by focus areas), intra-laboratory projects (captured by lab leads), and by technology type (captured by SMEs).

OVERVIEW		APPLICATIONS	R&D NEEDS		ROADMAP		IMPLEMENTATION
PERSONNEL PROGRAM SYNER		RGIES	PROGR	AM RESOURCES		AVENUES / FOAs	

PROGRAM SYNERGIES: ACTIVITIES WITH DIRECT COORDINATION OF SCOPE

Nuclear Energy – Reactor Fleet and Advanced Reactor Deployment

- Advanced Materials and Manufacturing Technologies (AMMT)
- Nuclear Energy Advanced Modeling and Simulation (NEAMS)
- Nuclear Science User Facilities (NSUF)
- Gateway for Accelerated Innovation in Nuclear (GAIN)
- Light Water Reactor Sustainability (LWRS)
- Nuclear Cybersecurity
- Sodium-Cooled Fast Reactors (SFR)
- High-Temperature Gas-Cooled Reactors (HTGR)/TRISO Fuel
- Molten Salt Reactors (MSR)
- Microreactors
- National Reactor Innovation Center (NRIC)

Nuclear Energy – Nuclear Fuel Cycle and Supply Chain

- Advanced Fuels Campaign (AFC)
- Nuclear Energy International Nuclear Energy Policy and Cooperation
- Office of Bilateral, Multilateral and Commercial Cooperation
- Other programs or Organizations
- Nuclear Regulatory Commission (NRC)
- Electric Power Research Institute (EPRI)
- Advanced Research Projects Agency Energy (ARPA-E)
- Navy Nuclear Laboratory (NNL)
- National Institute of Standards and Technology (NIST)

OVERVIEW		APPLICATIONS	R&D NEEDS ROADI		ROADMAP	IMPLEMENTATION	
PERSONNEL		PROGRAM SYNERGIES		PROGRAM RESOURCES		AVENUES / FOAs	
IRRADIATION TEST	SENSO	ISOR QUALIFICATION DEVICES NATIONAL		ABORATORIES UNIVERSITIES		INDUSTRY PARTNERS	

PROGRAM RESOURCES: IRRADIATION TEST

Irradiation test requirements and technology maturity largely determine the appropriate facility for testing

Low sensor TRL Technology Easier Access Lower Cost Tests Separate effects testing

High sensor TRL Technology Limited Access Higher Costs, High Dose Controlled Prototypic Environment

DEVELOPMENT

PROTOTYPIC DEPLOYMENT

OVERVIEW		APPLICATIONS	R&D NEEDS		ROADMAP		IMPLEMENTATION
PERSONNEL		PROGRAM SYNERGIES		PROGRAM RESOURCES		AVENUES / FOAs	
IRRADIATION TEST	SENSC	OR QUALIFICATION DEVICES NATIONAL LAB		BORATORIES	UNIVERSITIES		INDUSTRY PARTNERS

PROGRAM RESOURCES: SENSOR QUALIFICATION DEVICES

Phased approach to qualification of sensors under irradiation environments:

Laboratory-based Testing

Benchtop, Furnace, Autoclave testing (non-nuclear).

Concurrent/Initial Nuclear Testing

Low cost, rapid deployment, generally uncontrolled environment instrumentation may be included in experiment funded by other programs.

Qualification Nuclear Testing

Highly controlled environment, reference measurements for measurand in addition to cross sensitivity parameters. National Institute of Standards and Technology (NIST) traceable references where appropriate.

Specialized devices are required to provide a *known* environment to benchmark sensors, define sensor uncertainty, and ultimately qualify for deployment.

 Measurement Parameters: Temperature, Neutrons (Flux/fluence/spectrum), Pressure, Displacement

Device for qualifying temperature and neutron sensors

- High dose, transient, gamma-only irradiation devices for each measurement parameter
- Requirements for temperature and neutron sensors are conducive to them being the same device

Device for qualifying pressure

• Device design will be based on the temperature/neutron device, but will require ex-core pressure control with NIST traceable reference sensor

Displacement

 Similarly based on the temperature/neutron device, but will require precise mechanical controls to impose a known and repeatable displacement for the sensors to measure

	Temperature/ Neutron	Pressure	Displacement
High Dose	X	X	X
Transient	X		X
Gamma Only	X	X	

OVERVIEW		APPLICATIONS R&D		NEEDS	ROADMAP		IMPLEMENTATION
PERSONNEL		PROGRAM SYNERGIES		PROGRAM RESOURCES		AVENUES / FOAs	
IRRADIATION TEST	SENSO	OR QUALIFICATION DEVICES NATIONAL LAB		BORATORIES	UNIVERSITIES		INDUSTRY PARTNERS

PROGRAM RESOURCES: RODLET REFABRICATION

The testing and qualification of nuclear fuel systems provides significant demand for in-pile sensors and instrumentation:

Qualification of nuclear fuel systems requires accident testing at end-of-life scenarios. Few materials can survive these conditions throughout the irradiation. Rodlet Refabrication is a methodology to take irradiated fuel rods and refabricate them with new sensors.

- Rodlet refabrication was pioneered by Halden and work has begun at INL
- Refabrication usually takes the form of a new rodlet endcap which is welded to the irradiated cladding

Integrating instrumentation into advanced endcap designs compatible with rodlet refabrication is key to sensor performance. Desired endcaps include:

- Plenum pressure (LVDT-based)
- Fiber optic sensors in plenum (Temperature, fission gas, pressure, etc.)
- Ultrasonic centerline temperature
- Thermocouple (centerline & plenum)
- Potential combination of these technologies

OVERVIEW		APPLICATIONS	PPLICATIONS R&D NEEDS		ROADMAP		IMPLEMENTATION
PERSONNEL		PROGRAM SYNERGIES		PROGRAM RESOURCES		AVENUES / FOAs	
IRRADIATION TEST	SENSO	OR QUALIFICATION DEVICES	NATIONAL LA	ABORATORIES	UNIVERSITIES		INDUSTRY PARTNERS

PROGRAM RESOURCES: NATIONAL LABORATORIES

The ASI Program currently has National Laboratory partnerships which include:

National Laboratory Research Reactors

- Transient Reactor Test Facility (TREAT)
- Advanced Test Reactor (ATR)
- Advanced Test Reactor Critical Facility (ATRC)
- Neutron Radiography Reactor (NRAD)
- High Flux Isotope Reactor (HFIR)

National Laboratory Facilities

- Measurement Science Laboratory (MSL)
- <u>Digital Innovation Center of Excellence (DICE)</u>
- Microreactor Agile Non-Nuclear Experimental Test Bed (MAGNET)
- Single Primary Heat Extraction and Removal Emulator (SPHERE)
- Microreactor Applications Research Validation and Evaluation (MARVEL)
- Low Activation Materials Development and Analysis (LAMDA) laboratory
- Mechanisms Engineering Test Loop Facility (METL)

OVERVIEW		APPLICATIONS	R&D NEEDS		ROADMAP		IMPLEMENTATION	
PERSONNEL	PERSONNEL		PROGRAM SYNERGIES		PROGRAM RESOURCES		AVENUES / FOAs	
IRRADIATION TEST	SENS	OR QUALIFICATION DEVICES	NATIONAL LA	ABORATORIES	UNIVERSITIES		INDUSTRY PARTNERS	

PROGRAM RESOURCES: UNIVERSITIES COLLABORATIONS

R&D projects awarded competitively through the <u>DOE Consolidated Innovative Nuclear Research FOA</u>

OVERVIEW		APPLICATIONS	R&D NEEDS		ROADMAP		IMPLEMENTATION
PERSONNEL		PROGRAM SYNERGIES		PROGRAM RESOURCES		AVENUES / FOAs	
IRRADIATION TEST	SENSO	SOR QUALIFICATION DEVICES NATIONAL L		ABORATORIES UNIVERSITIES			INDUSTRY PARTNERS

PROGRAM RESOURCES: INDUSTRY PARTNERS

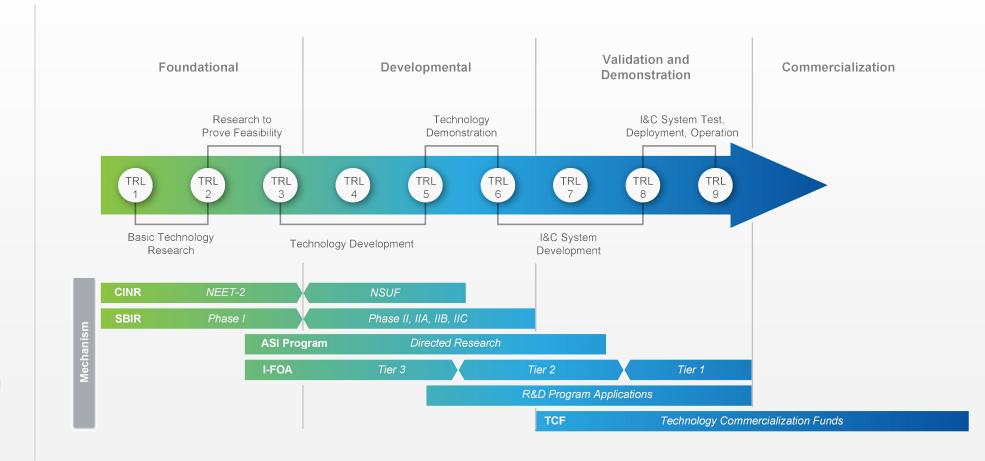
Commercialization projects

Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) connected the ASI program with instruments developers and supplier since the program start. Examples from currently active projects include:

- Alphacore Inc. Video Camera for Harsh Environments in Nuclear
- Analysis & Measurement Services Corp. Health Monitoring of Digital I&C systems using Online Electromagnetic Measurements
- Goldfinch Sensor Technologies and Analytics LLC Metamaterial Void Sensor for Fast Transient Testing
- Intelligent Optical Systems, Inc. Advanced Laser Ultrasonic Sensor for Fuel Rod Characterization
- Sporian Microsystems, Inc. High Temperature Operable, Harsh Environment Tolerant Flow Sensors for Nuclear Reactor Applications
- X-Wave Innovations, Inc. Development of Radiation Endurance Ultrasonic Transducer for Nuclear Reactors

Technology Commercialization Fund (TCF) offer opportunities for technology transfer from Laboratories to industry. Examples from recent project:

• Idaho Laboratories Corporation / Idaho National Laboratory - High Temperature Irradiation Resistant Thermocouple



 OVERVIEW
 APPLICATIONS
 R&D NEEDS
 ROADMAP
 IMPLEMENTATION

 PERSONNEL
 PROGRAM SYNERGIES
 PROGRAM RESOURCES
 AVENUES / FOAS

PROGRAM RESOURCES: AVENUES / FOAs

The concept of technology readiness assessment is to determine the maturity level of a technology toward commercialization and final usage. There are various funding opportunity announcements (FOAs) that the ASI program uses to target specific points in the technology development lifecycle. Outlined here is an overview of how the program utilizes different funding mechanisms over the course of the technology development lifecycle.

Office of ENERGY NUCLEAR ENERGY