

Design and development of equi-atomic high entropy alloys for use in irradiation environments

December 2023

Anilas Karimpilakkal, Joseph Newkirk, Jason L Schulthess, Frank Liou

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Design and development of equi-atomic high entropy alloys for use in irradiation environments

Anilas Karimpilakkal, Joseph Newkirk, Jason L Schulthess, Frank Liou

December 2023

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

Design and development of equi-atomic high entropy alloys for use in irradiation environments

Anilas Karimpilakkal

PhD Candidate, Materials Science and Engineering Missouri University of Science and Technology

- J. Newkirk¹, J. Schulthess², F. Liou¹
- 1 Missouri University of Science and Technology, 2 Idaho National Laboratory

Background

- Ever growing energy need and carbon footprint free sources

 Generation (Gen) IV reactors!!
- Structural materials in nuclear environments
 → degradation of properties & failure !!
- New Materials with better irradiation properties → High Entropy Alloys(HEAs)^[1,2].

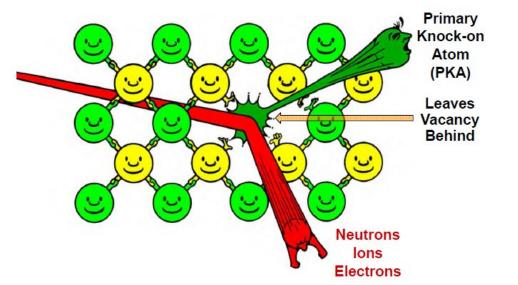
Prolonged service period 10s of yrs

High temperature 500 -1000 °C

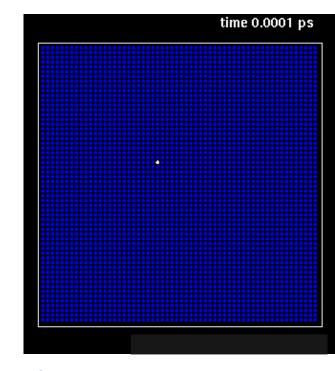
Gen IV nuclear reactor environment

Radiation dose rate ~30 - 200dpa by 1 - 3 MeV neutrons

Corrosive coolants (He, Molten salts, Liquid Na, Pb)



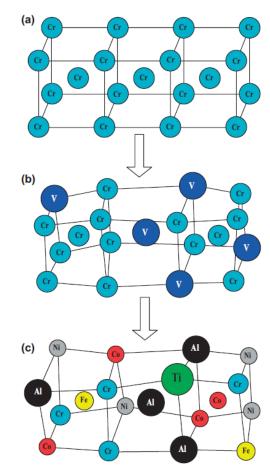
Fukushima nuclear accident 2011



Radiation damage

- Ballistic collision → high energy particle and atoms
- Displacement cascade → Frenkel pairs, FP.
- Thermal spike → localized heating & recombination of FPs.
- Annealing → surviving FPs.
- Diffusion of FPs → extended defects.

Collision cascade induced by a 10keV recoil in Au at 0K temperature [3]



HEAs ??

Conventional alloy High entropy alloy

- HEAs are proved to possess
 - higher resistance to defect formation [1]
 - lower void swelling [2]
 - higher microstructural stability under irradiation [2]
 - limited irradiation hardening [2]
- These are due to
 - poor thermal conductivities → promote recombination of FPs
 - sluggish diffusion → lesser extended defects
 - higher defect energetics → lower damage accumulation

Schematic illustration of BCC crystal structure: (a) Cr (b) Cr-V solid solution distorted lattice (c) seriously distorted AlCoCrFeNiTi0.5 system [Zhang]

Selection of nuclear friendly elements

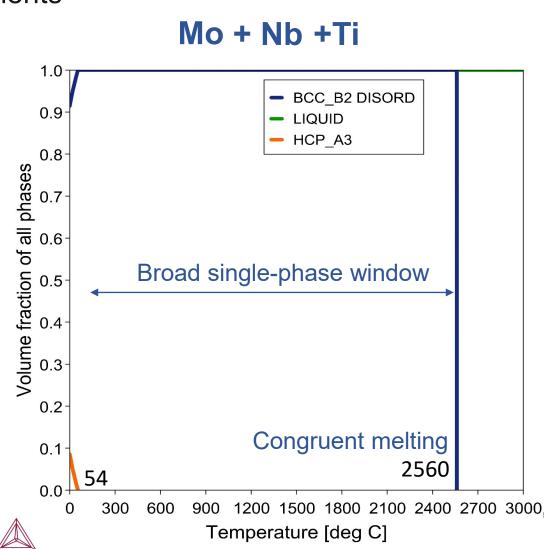
Elements and their properties

Elements	r [Å]	T _m [K]	ρ [g/cm³]	χ	σ _A [barns]
Al	1.432	933	2.72	1.47	0.231
Ti	1.462	1941	4.51	1.32	6.09
V	1.340	2183	6.12	1.45	5.08
Cr	1.249	2180	7.19	1.56	3.05
Zr	1.600	2128	6.51	1.22	0.185
Nb	1.429	2750	8.58	1.23	1.15
Мо	1.363	2896	10.23	1.30	2.48

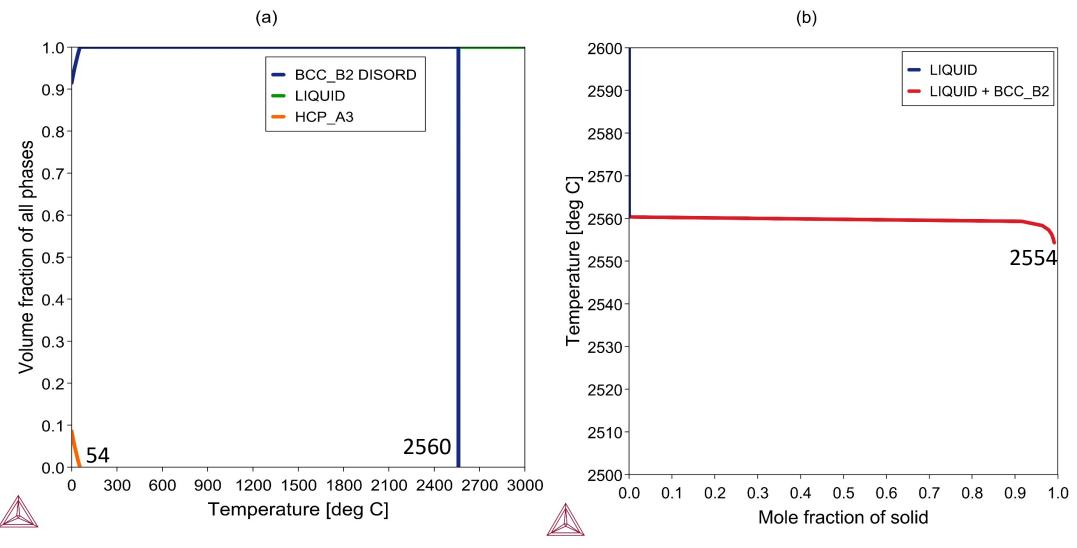
- Trade off b/w σ_A , T_m , r and ρ .
- Low melting Al \rightarrow low σ_{A} and ρ .
- Hf, Ta, W \rightarrow avoided for σ_A and ρ .
- MISSOURI

Atomic size diff <15% → solid solution according to HRR

CALPHAD modelling*

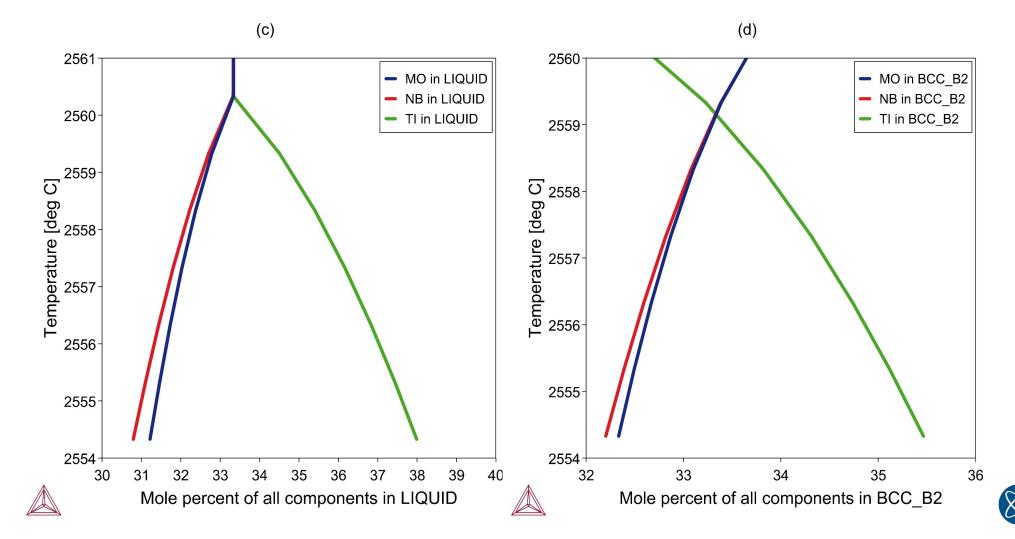

- Playing around with different combinations of elements
- Using Thermo-Calc2022b, TCHEA6 database
- 2 routes for Phase prediction
 - Equilibrium diagram route → assumes infinitely slow cooling
 - Non equilibrium diagram route

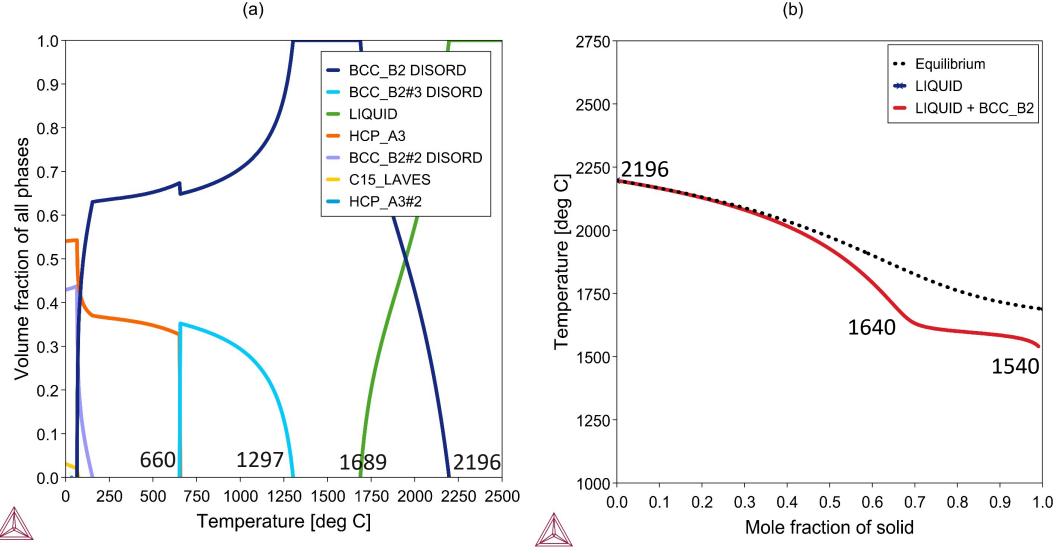
 assumes negligible diffusion in solid state


Systems and their composition

System	Compositio	n [a	t %]	
DI	MoNbTi	(Base	system
DII	MoNbTiZr			
D III	MoNbTiCr			
DIV	MoNbTiV			
DV	MoNbTiAl			
D VI	MoNbTiZrV			
D VII	MoNbTiCrV			
D VIII	MoNbTiCrAl			
DIX	MoNbZrCrAl			

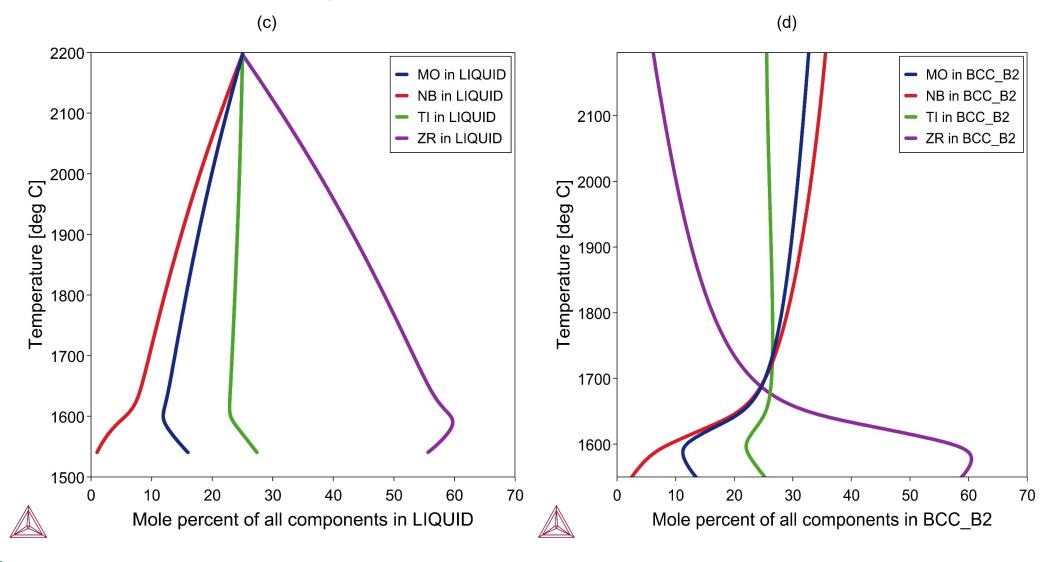
CALPHAD modelling – DI MoNbTi




CALPHAD modelling – DI MoNbTi

MISSOURI

Microstructure prediction → Elemental compositional map for a phase


CALPHAD modelling – DII MoNbTiZr

CALPHAD modelling – DII MoNbTiZr

CALPHAD modelling summary

	System	Equilibrium diagram	NE diagram	Microstructure
DΙ	MoNbTi	BCC + HCP	ВСС	More or less homogeneous
DII	MoNbTiZr	BCC1 + BCC2 + HCP1 + C15 + HCP2	ВСС	Zr segregation
D III	MoNbTiCr	BCC1 + C14 + C15 + BCC2	BCC+C14	Cr segregation in BCC + Cr ₂ Ti Laves
DIV	MoNbTiV	BCC1 + BCC2	BCC	V segregation
DV	MoNbTiAl	BCC1 + A15 + O phase + AlTi + Al ₃ Ti + BCC2	BCC+Al ₃ Ti	Al segregation in BCC
D VI	MoNbTiZrV	BCC1 + BCC2 + C15 + HCP1 + BCC2 + HCP2	BCC1 + BCC2	Zr & V segregation in BCC
D VII	MoNbTiCrV	BCC1 + BCC2 + HCP	BCC	Cr & V segregation in BCC
D VIII	MoNbTiCrAl	BCC1 + C14 + A15 + BCC2 + C15	BCC + C14	Al & Cr segregation in BCC + Cr ₂ Ti Laves
D IX	MoNbZrCrAl	C14 + BCC	$BCC + C14 + Al_2Zr_3$	Zr segregation in BCC + Cr, Zr, Al rich Laves

Empirical parameters and equations

•
$$\Delta S_{mix} = \Delta S_{mix}^{conf} = -R \sum_{i=1}^{N} x_i \ln x_i$$
 Boltzmann's hypothesis [6]

•
$$\Delta H_{mix} = 4 \sum_{i=1, i \neq j}^{N} \Delta H_{mix}^{ij} \quad x_i x_j$$
 Regular solution model [7]

$$\bullet \ \delta = \sqrt{\sum_{i=1}^{N} x_i \left(1 - \frac{r_i}{\sum_{j=1}^{N} x_j r_j}\right)^2}$$

Zhang [8]

$$\bullet \ \Omega = \frac{T_m \Delta S_{mix}}{|\Delta H_{mix}|}$$

Yang [9]

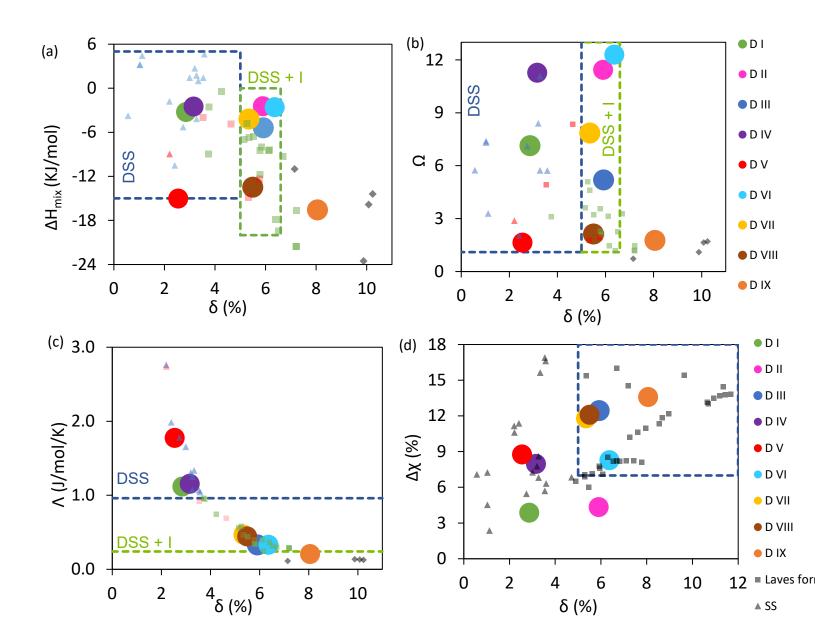
•
$$\Delta \chi = \sum_{i=1}^{N} x_i \left(1 - \frac{\chi_i}{\chi_a}\right) * 100$$

Poletti [10]

•
$$\Lambda = \frac{\Delta S_{mix}}{\delta}$$

Singh [11]

Calculated thermodynamic and empirical parameters


System	T _m [°C]	ΔH_{mix}	ΔS_{mix}	Ω	δ	٨	Δχ
	average	[KJ/mol]	[J/K/mol]		[%]		[%]
DI	2256.00	-3.24	9.13	7.13	2.86	1.12	3.9
DII	2155.75	-2.45	11.53	11.43	5.90	0.33	4.3
D III	2156.25	-5.40	11.53	5.19	5.92	0.33	12.4
D IV	2169.50	-2.50	11.53	11.26	3.16	1.15	8.0
DV	1857.00	-15.03	11.53	1.63	2.55	1.77	8.8
D VI	2106.60	-2.59	13.38	12.29	6.37	0.33	8.3
D VII	2195.80	-4.21	13.38	7.85	5.35	0.47	11.8
D VIII	1867.00	-13.49	13.38	2.12	5.50	0.44	12.1
DIX	1904.40	-16.59	13.38	1.76	8.06	0.21	13.6

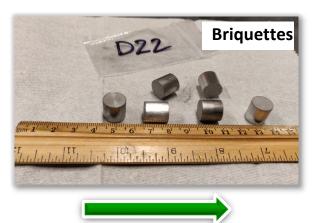
Empirical value mapping & phase prediction

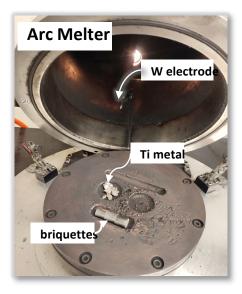
- Zhang's criteria
- Yang's criteria
- Singh's criteria
- Poletti's criteria

Empirical Modelling summary

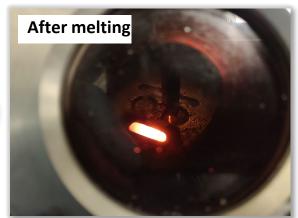
	System	Phase prediction		
DI	MoNbTi	DSS		
DIV	MoNbTiV	DSS		
DV	MoNbTiAl	DSS		Elements
DV	MONDIA	D33		Мо
DII	MoNbTiZr	DSS + I	1	Nb
D III	MoNbTiCr	DSS + I		Ti
D VI	MoNbTiZrV	DSS + I		Zr
D VII	MoNbTiCrV	DSS + I		Cr
D VIII	MoNbTiCrAl	DSS + I	J	V
DIX	MoNbZrCrAl			Al

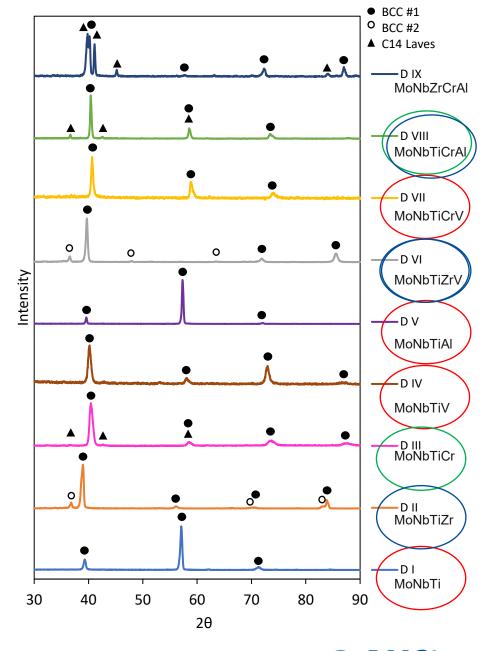
Elements	r [Å]
Mo	1.363
Nb	1.429
Ti	1.462
Zr	1.600
Cr	1.249
V	1.340
Al	1.432





Fabrication





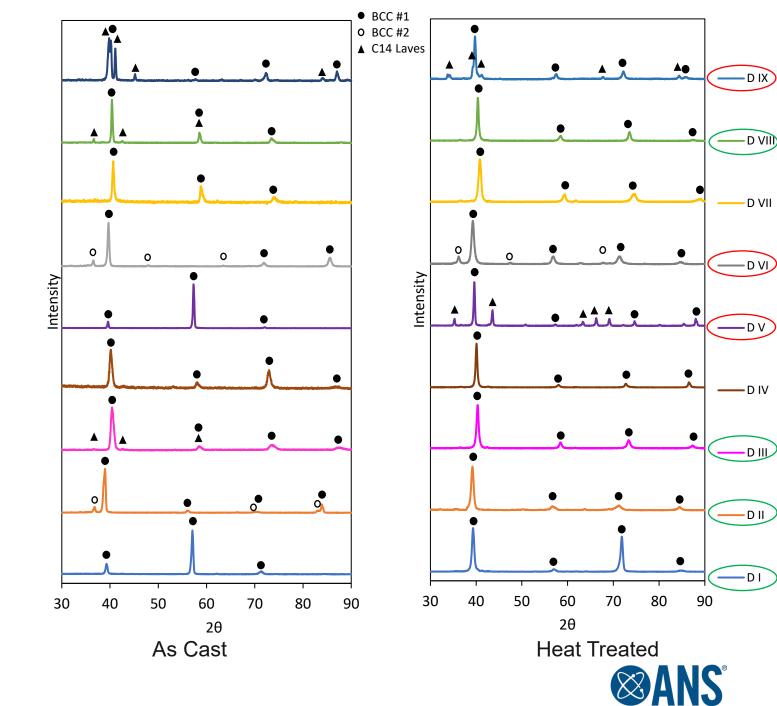
XRD for validation of modelling

- Consistent with NE CALPHAD predictions
- Agreement with empirical modelling
 - Single phase → D I, D IV, D V
 - $SS + I \rightarrow DIII, DVIII$
- Disagreement →
 - D II, D VI and D VII intermetallics predicted
 - Laves phase prediction for D VI

Chemistry, density and hardness of as-cast

- Chemistry
 - within ±2% error from the nominal
- Hardness
 - Lave phase detected D III, D VIII and D IX higher
 - Lowest in D IV
- Density
 - Close to estimated values by rule of mixture
 - Al containing lower densities

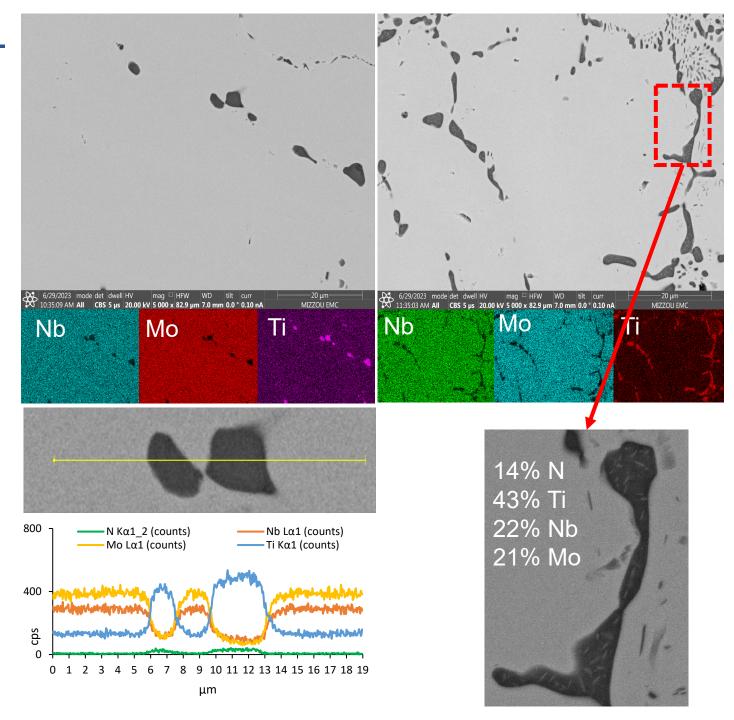
	At %	Иo	Nb Ti	-	Zr C	r V	Al	
DΙ	Nominal	33.3	33.3	33.3				
	EDS	34.3	33.7	32.1				
DII	Nominal	25.0	25.0 Bulk Den	25.0	25.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	
System	EDS	24.0	24.2	26.4	25.3	Vickers		
Ď III	Nominal	25.0	Гһе д⁄<u>я</u>ф са	l 25. 10 1	easured	Hardness		
DI-Mo	NEDS	25.7	25.7	24.6	7.83	24.1	 1	
D IV	Nominal	25.0	25.0 25.0	25.0	7.05	496 2!	5.0	
DII - Mo	o l elelegiZr	24.9	24.79.31	25.6	7.47	54 2	466	
DIN-M	Medital	25.0	25.9. ₅₉	25.0	7.62	611.	2	25.0
D. IV	EDS	25.7	26.2	24.2	7.02			23.9
₽ _I §I_ I∧	loNbTiV Nominal	20.0	20.035	20.0	2/0.202	472	2 .0)	
DV - M	o ₹ND\$ TiAl	19.4	19 <i>ह</i> .47	20.6	19.64	584	2 ₈ 4	
P'All M	Nominal IoNbTiZrV	20.0		20.0			0.0	
D VI – IV	EDS	18.1	20.513	18.2	7.08	21.7 ⁵³ 8	1 ¹ .1	
DWIII N	1 000 b7iiGaV	20.0	20.70.32	20.0	7.34	20.0 579.	.2	20.0
D VIII - N	EDS NoNoTiCrA	20.0	20.8	18.7	(6.93	20.5	1	20.0
DIX	Nominal	20.0	20.0 56)	20.0	20.0 656.		20.0
DIX - M	ο[Ŋ βZrCrAl	21.2	21 6 .97	,	1998	18.9 820.	6)	19.0

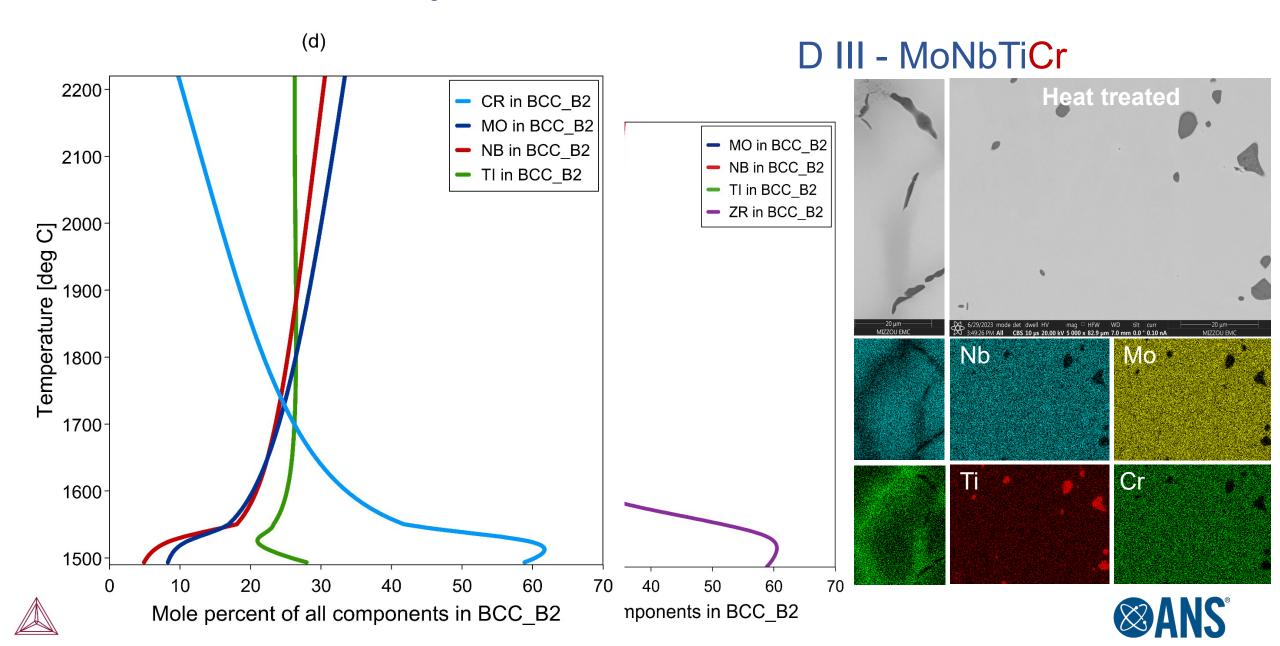


Heat treatment

- 1500 °C for 24hr and water quenching
- D I retained single phase
- D II, D III, D VIII converted to single phase
- D V converted to multi phase
- D VI, DIX retained multiphase
- Heat treatment

 homogenization, systems moving towards equilibrium



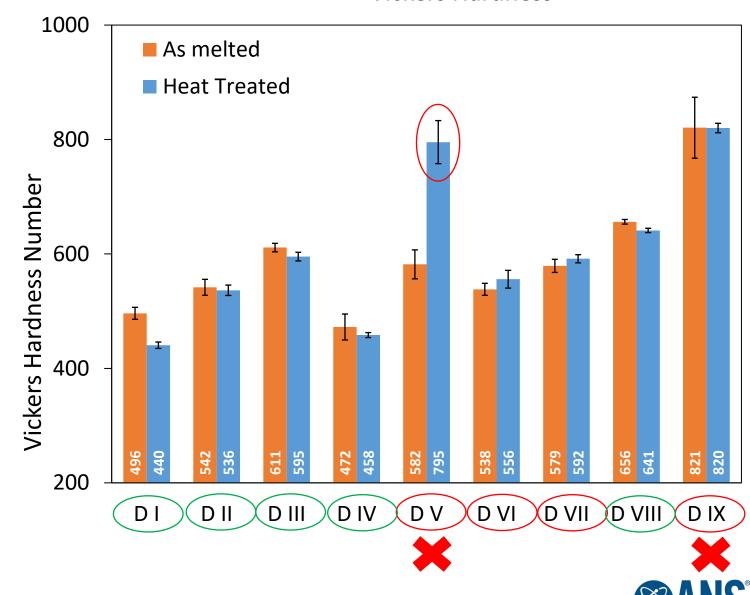

Microstructural analysis – D I - MoNbTi

- As cast Single phase matrix + black Ti rich phase
- Heat treated— Single phase matrix + black Ti rich phase
- Ti rich phase nitrides of Ti
 - ~ 28-30 at% N, 65-70 at% Ti with traces of Nb, Mo
- Needle like precipitates rich in Nb and Mo found co precipitated inside nitrides

Microstructural analysis

Microstructural analysis –

	System	As cast	Heat treated
DI	MoNbTi <	Single phase matrix + Ti nitrides	Single phase matrix + Ti nitrides
DII	MoNbTiZr	Intergranular Zr and Ti enrichment + Ti, Zr nitrides	Single phase matrix + Ti, Zr nitrides
D III	MoNbTiCr	Intergranular Cr and Ti enrichment + Ti nitrides	Single phase matrix + Ti nitrides
DIV	MoNbTiV	Intergranular V and Ti enrichment + Ti nitrides	Single phase matrix + Ti nitrides
DV	MoNbTi <mark>Al</mark>	Single phase matrix + Ti nitrides	Multi-phased → Ti Nitrides + Ti rich phase + Nb, Mo rich phase
D VI	MoNbTi <mark>ZrV</mark>	Intergranular Zr enrichment + Mo, Nb, V, Ti rich matrix + Zr rich precipitates	Reduced segregation, Zr rich GBs + Zr rich precipitates
D VII	MoNbTiCrV	Intergranular Cr and Ti rich GBs + Ti nitrides	Reduced segregation, Cr rich Intergranular + Ti Nitrides
D VIII	MoNbTiCrAl <	Cr and Ti rich regions + Ti nitrides	Single phase matrix + Ti nitrides
DIX	MoNbZrCrAl	Nb, Mo rich phase + Al, Cr, Zr rich matrix	Nb, Mo rich phase + Al, Cr, Zr rich matrix

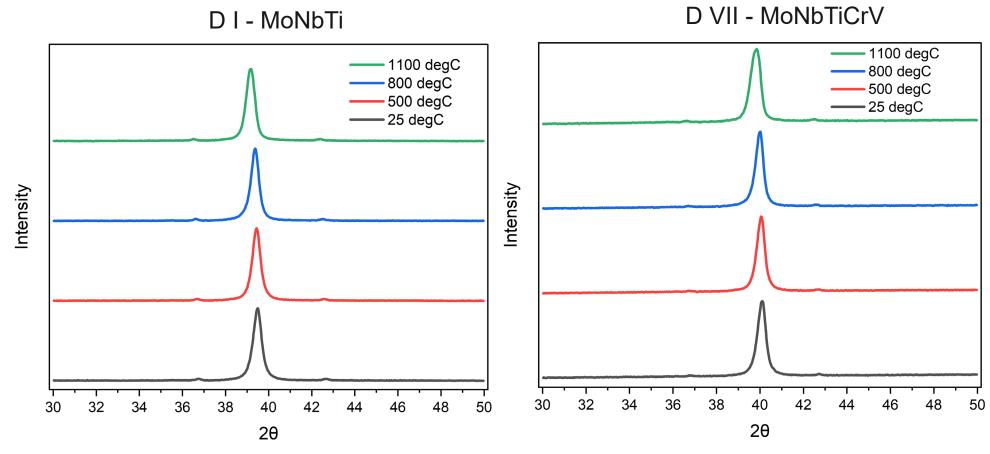


Hardness comparison

- Hardness
 - ↑multi phased systems → DV, D VI, D VII, D IX
 - ↓ attained/retained the single phase → D I, D II, D III, D IV, D VIII
 - Scatter of hardness values ↓ except for D V
 - D V, D IX high hardness, multi-phased microstructure, machining difficulty due to brittleness – no further analysis

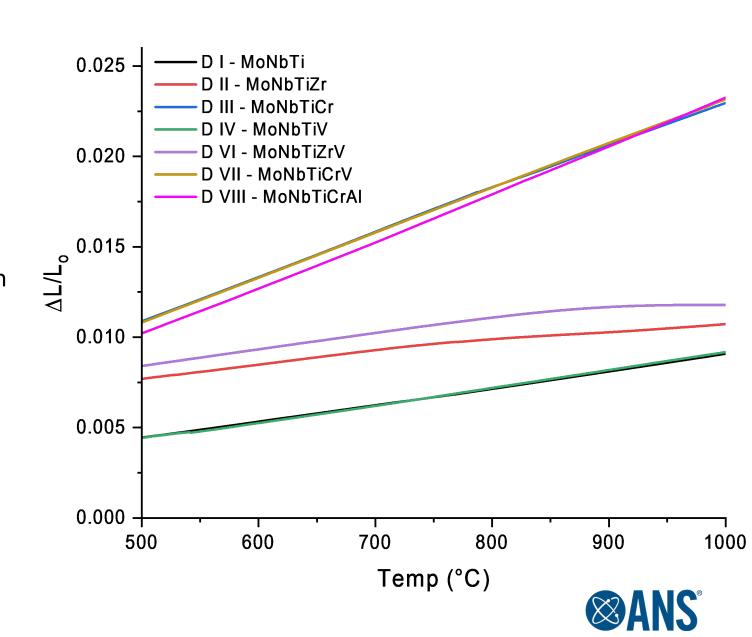
Vickers Hardness

High temperature phase evaluation


- Evaluate phase stability at temperature range of interest
 - 500 1000 °C (Gen IV reactor operation)
- High temperature XRD -
 - Performed in vacuum at 500, 800 and 1100 °C
- Dilatometry -
 - 10 °C/min heating of sample until 1050 °C followed by cooling at same rate
 - Change in length of specimen recorded every 0.05s
- Ageing studies -
 - Performed at 800 and 1000 °C for 48 and 96hrs
 - Microstructural analysis

High Temperature XRD

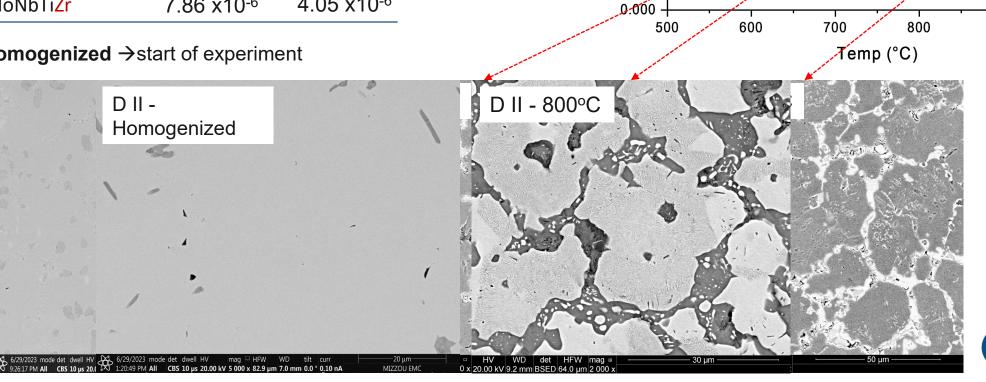
No systems evidently showed peaks corresponding to new phases.



Dilatometry

- D I & DIV lower CTE value compared to SS 304L and 316L
- Cr containing D III, D VI & D VIII higher CTE value
- Zr containing D II and D VI changes slope around 800°C.
- All others demonstrate phase stability at high temp

	System	CTE (/°C) Slope change
DI	MoNbTi	8.88 x10 ⁻⁶
DII	MoNbTi <mark>Z</mark> r	$7.86 \times 10^{-6} \longrightarrow 4.05 \times 10^{-6}$
DIII	MoNbTiCr	23.70x10 ⁻⁶
DIV	MoNbTiV	8.94 x10 ⁻⁶
DVI	MoNbTi <mark>Z</mark> rV	$8.75 \times 10^{-6} \longrightarrow 1.25 \times 10^{-6}$
D VII	MoNbTiCrV	24.20 x10 ⁻⁶
D VIII	MoNbTiCrAl	24.50 x10 ⁻⁶
SS	314L	17.20 x10 ⁻⁶
SS	304L	17.30 x10 ⁻⁶


Dilatometry and Ageing studies

 Zr containing D II and D VI changes slope around 800°C.

	System	CTE (/°C)	Slope change
D VI	MoNbTi <mark>Z</mark> rV	8.75 x10 ⁻⁶	1.25 x10 ⁻⁶
DII	MoNbTi <mark>Z</mark> r	7.86 x10 ⁻⁶	4.05 x10 ⁻⁶

D VI – Homogenized → start of experiment

MISSOURI

D I - MoNbTi

D II - MoNbTiZr D III - MoNbTiCr

D IV - MoNbTiV

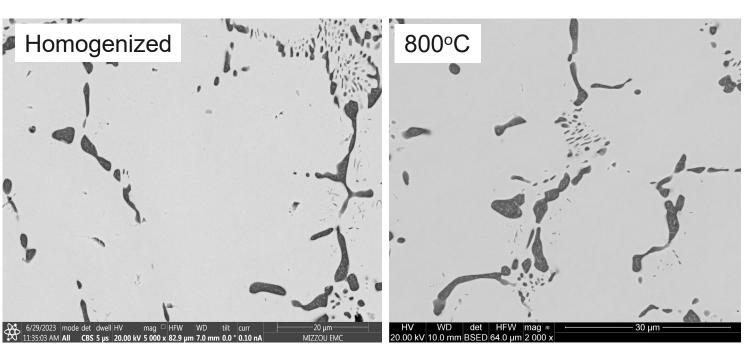
D VI - MoNbTiZrV D VII - MoNbTiCrV D VIII - MoNbTiCrAl

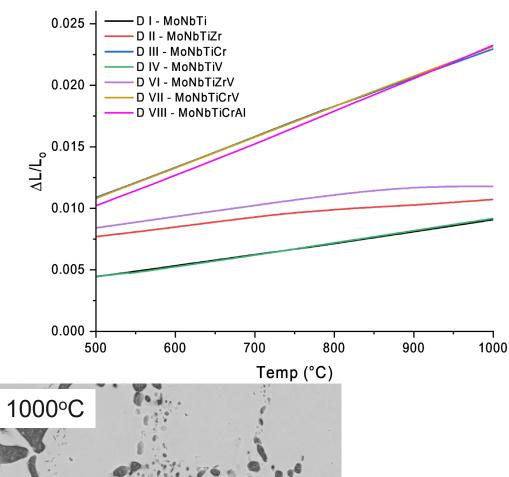
900

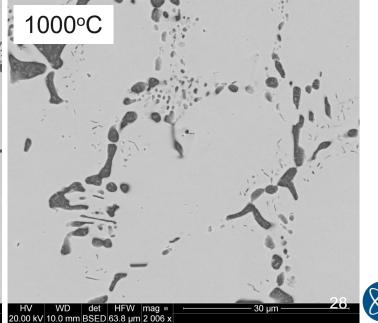
1000

0.025

0.020


0.010


0.005


0.015 · ·

Dilatometry and Ageing studies

- All others D I, D IV and D III, D VII & D VIII − no major slope changes → phase stability at high temp
- Eg D I MoNbTi.

Conclusions and future works

- Promising microstructural and dimensional stability in the operational range of Gen IV reactors.
 - DI MoNbTi,
 - DIII MoNbTiCr,
 - D IV MoNbTiV,
 - D VII MoNbTiCrV,
 - D VIII MoNbTiCrAl
- D II MoNbTiZr, D VI MoNbTiZrV although showed homogenized microstructure after heat treatment, dimensional and microstructural stability at higher temperatures → not promising.
- These materials are being irradiated in a reactor at INL, to evaluate their irradiation performance.
- Oxidation studies in steam and air are being carried out.
- More mechanical property testing need to be done before confirming their candidacy as structural materials in reactors.

Acknowledgement

- This work was supported through the U.S. Department of Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517. This work was also supported through Idaho National Laboratory's Laboratory Directed Research and Development program through project 20A44-046FP.
- Thanks to my advisor, Dr Joseph W Newkirk (MS&T), Dr Frank Liou (MS&T), Jason Schulthess (INL), Visharad Jalan (MS&T), Dr Eric Bohannan (MS&T) for their support in the project.

References

- 1. Egami, T., W. Guo, P. D. Rack, and T. Nagase. "Irradiation resistance of multicomponent alloys." *Metallurgical and Materials Transactions A* 45 (2014): 180-183.
- 2. Xia, Song-qin, W. A. N. G. Zhen, Teng-fei Yang, and Yong Zhang. "Irradiation behavior in high entropy alloys." Journal of Iron and Steel Research, International 22, no. 10 (2015): 879-884.
- 3. Nordlund, Kai, Andrea E. Sand, Fredric Granberg, Steven J. Zinkle, Roger Stoller, Robert S. Averback, Tomoaki Suzudo et al. "Primary Radiation Damage in Materials. Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate in Cascade Defect Production Efficiency and Mixing Effects." (2015).
- 4. Zhang, Yong, Yun Jun Zhou, Jun Pin Lin, Guo Liang Chen, and Peter K. Liaw. "Solid-solution phase formation rules for multi-component alloys." *Advanced engineering materials* 10, no. 6 (2008): 534-538.
- 5. O. N. Senkov, J. D. Miller, D. B. Miracle, and C. Woodward, "Accelerated exploration of multi-principal element alloys for structural applications," CALPHAD, vol. 50, pp. 32–48, 2015.
- 6. J. W. Yeh, "Alloy design strategies and future trends in high-entropy alloys," JOM, vol. 65, no. 12, pp. 1759–1771, Dec. 2013.
- 7. Yang, Xiao, and Yong Zhang. "Prediction of high-entropy stabilized solid-solution in multi-component alloys." Materials Chemistry and Physics 132, no. 2-3 (2012): 233-238.
- 8. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, "Solid-solution phase formation rules for multi-component alloys," Adv Eng Mater, vol. 10, no. 6, pp. 534–538, Jun. 2008.
- 9. X. Yang and Y. Zhang, "Prediction of high-entropy stabilized solid-solution in multi-component alloys," *Mater Chem Phys*, vol. 132, no. 2–3, pp. 233–238, Feb. 2012.
- 10. M. G. Poletti and L. Battezzati, "Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems," Acta Mater, vol. 75, pp. 297–306, Aug. 2014.
- 11. A. K. Singh, N. Kumar, A. Dwivedi, and A. Subramaniam, "A geometrical parameter for the formation of disordered solid solutions in multi-component alloys," *Intermetallics (Barking)*, vol. 53, pp. 112–119, 2014.
- 12. V. K. Soni, S. Sanyal, K. R. Rao, and S. K. Sinha, "A review on phase prediction in high entropy alloys," *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science*, vol. 235, no. 22. SAGE Publications Ltd, pp. 6268–6286, Nov. 01, 2021

