INL/CON-18-52242-Revision-0

Cyber Security of DC Fast Charging: Potential Impacts to the Electric Grid

Kenneth W Rohde

January 2019

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

INL/CON-18-52242-Revision-0

Cyber Security of DC Fast Charging: Potential Impacts to the Electric Grid

Kenneth W Rohde

January 2019

Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract 103040163

Cyber Security of DC Fast Charging: Potential Impacts to the Electric Grid

vw.inl.gov

Kenneth Rohde – Cyber Security R&D kenneth.rohde@inl.gov

Video

Power Quality Measurements

- Disrupt controls coordination between power electronics modules
- Response of the DCFC:
 - Fluctuation of:
 - Input power from grid
 - Input power quality
 - Power Factor
 - Current THD
 - Output power to EV
 - Results in power quality outside of industry limits
 - Power Factor: <0.8
 - Current THD: > 20%

Transient Power

- Simultaneously turn off all power electronics modules
- Response of the DCFC:
 - Full power (50 kW) to standby power (~300W)
 - 0.020 seconds (-2.6 MW/sec)
- No impact to grid from a single DCFC shut down
- Potential impact to grid if simultaneously shut down of 100's of DCFC
 - What about 350 kW XFC?

Electrify America

• Walmart in Idaho Falls – 1.2MW "Capacity"

Electrify America

• The magic boxes...

Electrify America

• If I only knew which vendor built these...

Cyber Security: EV Charging Infrastructure

- Vulnerabilities (Pathways and Attack Vectors)
 - Communications pathways (vehicle to EVSE, EVSE to service provider, EVSE to grid, etc.)
 - Controls systems (power electronics, energy management, thermal controls, etc.)
 - Physical vulnerabilities (access control, electrical, thermal, etc.)

Risk, Threats, & Impacts:

- *Moderate*: denial of service (no charging)
- Extensive: hardware damage / destruction
- Severe: human safety; wide-spread impact to electrical grid

Mitigation Strategies & Solutions:

- Prioritize mitigation of high risk, exploitable vulnerabilities

EV Charging Communications and Controls

External Attack Surfaces and Vectors

Internal Attack Surfaces and Vectors

Demonstration Details

Idaho National Laboratory

Note: minimal malicious details will be presented

- To not publically disclose detailed manipulation information
- DCFC internal power electronics communications were disrupted
 - Using off-the-shelf communication tools
 - Transmit & receive messages
 - "Man in the middle" module was <u>not</u> used
 - Intercept and retransmit modified messages
- After physical access was obtained (open DCFC enclosure), connection was easily made to the single internal communications network
- With remote access achieved, same control manipulation is enabled since the HMI is also connected to the single internal communications network

Demonstration Details

Successful:

- Able to manipulate the controls system inside DCFC
 - 1. Modify the HMI front panel display indicating charging status
 - 1. SOC, time remaining, charge power, etc.
 - 2. Disrupt controls coordination between power electronics modules
 - 3. Simultaneously turn off all power electronics modules

<u>Unsuccessful:</u>

- Unable to directly control high speed switching inside the power electronics
 - Pwr. elec. modules control is independent from single control network
- Unable to over charge the EV
 - EV stopped the charge event:
 - Shut down command sent by EV
 - Open battery contactors

Our Lab Environment

• The actual hardware...

Attack Pathway

Compromised PEV infects DCFC and vice versa

Idaho National Laboratory

DEV

DEVK

Virtual Environment

• For exploit development and testing...

Scenario Components

Scenario Components

- 1. PEV Charge Module
 - Successful removal of microcontroller from communications board
 - Successful extraction of firmware
 - Reverse engineering ECU firmware is painful
- 2. DCFC Vehicle Controllers
 - Successful extraction of firmware
 - Successful reflash of factory firmware via CAN from the HMI
- 3. DCFC Human Machine Interface (HMI)
 - Successful extraction of flash memory
 - Running Ubuntu Linux 12.0.4 LTS
 - All factory firmware located in the file system

Potential Mitigation Solutions and Strategies

- Decouple DCFC load transients from grid
 - Local Energy Storage
 - Charger site DC bus with DER
 - a.k.a. "DC-as-a-service"
- Internal performance monitor
 - Electrical performance and characteristics
 - Monitor for change in performance
 - Monitor for communication anomalies

Wireless Power Transfer

INL's Focus: Wireless Charging (WPT) & Xtreme Fast Charging (XFC)

- 1. <u>XFC</u>: Higher power
 - 350 kW (500A / 1000VDC) or higher
 - Liquid cooled cable & connector
 - Multiple standards still required (CCS, CHAdeMO, GB/T, overhead charging, etc.)
 - Likely co-located with several XFC at charge depot (>1 MW demand on grid)
- 2. <u>WPT</u>: Higher system complexity & controls
 - Controls communication is wireless
 - from ground assembly to vehicle assembly
 - Foreign object detection system
 - Vehicle approach, pairing, and alignment system

INL is developing cyber consequence engineering methodology guideline for advanced charging systems

Photo source: Electrify America

Photo source: companycartoday.co.uk

Idaho National Laboratory

Summary

- Cyber security of charging infrastructure
 - Critical to safety, reliability, and resiliency
 - INL is developing cyber-informed engineering methodologies and mitigation strategies
 - Extreme Fast Charging
 - Wireless Power Transfer
 - INL uses a Consequence driven, Cyber-informed Engineering (CCE) process
- Vulnerabilities, risks, and threats
 - Internal controls: Power electronics controls manipulation
 - External communications: multiple attack vectors / pathways
 - Increased complexity and charge power = increased risks and threats

Mitigation strategies and solutions

- Priority high consequence threats / risks
- Utilize cyber informed engineering designs
- Integrate inherent engineering solutions to minimize impact if system is compromised

Questions