Cyber Security of DC Fast Charging: Potential Impacts to the Electric Grid

Kenneth W Rohde

January 2019

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance
Cyber Security of DC Fast Charging: Potential Impacts to the Electric Grid

Kenneth W Rohde

January 2019

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract 103040163
Cyber Security of DC Fast Charging: Potential Impacts to the Electric Grid

Kenneth Rohde – Cyber Security R&D
kenneth.rohde@inl.gov
Video
Power Quality Measurements

• Disrupt controls coordination between power electronics modules

• Response of the DCFC:
 – Fluctuation of:
 • Input power from grid
 • Input power quality
 – Power Factor
 – Current THD
 • Output power to EV
 – Results in power quality outside of industry limits
 • Power Factor: <0.8
 • Current THD: > 20%
Transient Power

- Simultaneously turn off all power electronics modules

- Response of the DCFC:
 - Full power (50 kW) to standby power (~300W)
 - 0.020 seconds (-2.6 MW/sec)

- No impact to grid from a single DCFC shut down
- Potential impact to grid if simultaneously shut down of 100’s of DCFC
 - What about 350 kW XFC?
Electrify America

- Walmart in Idaho Falls – 1.2MW “Capacity”

- 1x 350KW CCS
- 1x 150KW CCS
- 2x 350KW CCS
- 1x 150KW CCS
- 1x 50KW CHAdeMO
- 2x 350KW CCS

Magic Power Electronics

500 KVA Transformer?
Electrify America

- The magic boxes…
Electrify America

• If I only knew which vendor built these…
Cyber Security: EV Charging Infrastructure

• **Vulnerabilities (Pathways and Attack Vectors)**
 – Communications pathways (vehicle to EVSE, EVSE to service provider, EVSE to grid, etc.)
 – Controls systems (power electronics, energy management, thermal controls, etc.)
 – Physical vulnerabilities (access control, electrical, thermal, etc.)

• **Risk, Threats, & Impacts:**
 – *Moderate*: denial of service (no charging)
 – *Extensive*: hardware damage / destruction
 – *Severe*: human safety; wide-spread impact to electrical grid

• **Mitigation Strategies & Solutions:**
 – Prioritize mitigation of high risk, exploitable vulnerabilities
EV Charging Communications and Controls

Electric Grid

Energy Aggregator

IEEE 2030.5
(SEP 2.0)

Open ADR

Open ADR

IEEE 2030.5

AC power

DC Fast Charger

Controls System

Communications

Power Electronics

Power Electronics

Power Electronics

Cooling

IEEE 15118 (CCS)

OCPP

IEC 61850

Grid Connected Vehicle

Cooling

IEEE 2030.1-1

(CHAdeMO)

DC current
External Attack Surfaces and Vectors

- Energy Aggregator
- Open ADR
- IEEE 2030.5 (SEP 2.0)
- Open ADR
- IEEE 2030.5

DC Fast Charger

- OCPP
- IEC 61850
- ISO 15118 (CCS)
- IEEE 2030 1.1 (CHAdeMO)

Electric Grid

- AC power

EVSE Service Provider

- OCPP
- IEC 61850

Grid Connected Vehicle

- Cooling
- DC current
Internal Attack Surfaces and Vectors

DC Fast Charger

- Communications
- Controls System
- Power Electronics
- Power Electronics
- Power Electronics
- Cooling
Demonstration Details

Note: minimal malicious details will be presented
- To not publically disclose detailed manipulation information

- DCFC internal power electronics communications were disrupted
 - Using off-the-shelf communication tools
 • Transmit & receive messages
 - “Man in the middle” module was not used
 • Intercept and retransmit modified messages

- After physical access was obtained (open DCFC enclosure), connection was easily made to the single internal communications network

- With remote access achieved, same control manipulation is enabled since the HMI is also connected to the single internal communications network
Demonstration Details

Successful:
• Able to manipulate the controls system inside DCFC
 1. Modify the HMI front panel display indicating charging status
 1. SOC, time remaining, charge power, etc.
 2. Disrupt controls coordination between power electronics modules
 3. Simultaneously turn off all power electronics modules

Unsuccessful:
• Unable to directly control high speed switching inside the power electronics
 – Pwr. elec. modules control is independent from single control network
• Unable to over charge the EV
 – EV stopped the charge event:
 • Shut down command sent by EV
 • Open battery contactors
Our Lab Environment

• The actual hardware…
Attack Pathway

- Compromised PEV infects DCFC and vice versa
Virtual Environment

• For exploit development and testing…
Scenario Components

1. PEV Module
- Power Conversion Board
- Communications Board
- 10-pin Header
- Scary Capacitor
- SH7147 Microcomputer
- CAN Transceivers
- Renesas Socket Adapter

2. Vehicle Controllers
- SAE J1772 Combo Controller
- CHAdeMO Controller
- Circuit Breakers
- Power Control Board
- CAN Bus Cables
- Step Down Transformer
- AC/DC Rectifiers
- CAN Bus Chain
- SIM Card Removed to Protect the Innocent
- HMI
- CAN Cables
- RFID Reader
- Guilty Hand

3. DCFC Local Server
Scenario Components

1. PEV Charge Module
 - Successful removal of microcontroller from communications board
 - Successful extraction of firmware
 • Reverse engineering ECU firmware is painful

2. DCFC Vehicle Controllers
 - Successful extraction of firmware
 - Successful reflash of factory firmware via CAN from the HMI

3. DCFC Human Machine Interface (HMI)
 - Successful extraction of flash memory
 • Running Ubuntu Linux 12.0.4 LTS
 - All factory firmware located in the file system
Potential Mitigation Solutions and Strategies

- Decouple DCFC load transients from grid
 - Local Energy Storage
- Charger site DC bus with DER
 - a.k.a. “DC-as-a-service”

- Internal performance monitor
 - Electrical performance and characteristics
 - Monitor for change in performance
 - Monitor for communication anomalies
Wireless Power Transfer

Wireless Charger
- Cooling
- Rectifier / Power Elec.
- Tuning / Filter
- Controls
- Communications
- Secondary Coil

EVSE Service Provider
- Energy Aggregator
- Open ADR
- IEC 61850
- OCPP

Electric Grid
- Open ADR
- IEEE 2030.5

Roadside Infrastructure (location, pairing, alignment, etc.)
- Vehicle CAN
- DSRC
- SAE J2954

IEEE 2030.5
- Primary Coil
- PFC
- Power Elec. Amplifier
- Controls System
- Cooling

Foreign Object Detection
INL’s Focus: Wireless Charging (WPT) & Xtreme Fast Charging (XFC)

1. **XFC** - Higher power
 - 350 kW (500A / 1000VDC) or higher
 - Liquid cooled cable & connector
 - Multiple standards still required (CCS, CHAdeMO, GB/T, overhead charging, etc.)
 - Likely co-located with several XFC at charge depot (>1 MW demand on grid)

2. **WPT** - Higher system complexity & controls
 - Controls communication is wireless
 - from ground assembly to vehicle assembly
 - Foreign object detection system
 - Vehicle approach, pairing, and alignment system

INL is developing cyber consequence engineering methodology guideline for advanced charging systems
Summary

- **Cyber security** of charging infrastructure
 - Critical to safety, reliability, and resiliency
 - INL is developing cyber-informed engineering methodologies and mitigation strategies
 - Extreme Fast Charging
 - Wireless Power Transfer
 - INL uses a Consequence driven, Cyber-informed Engineering (CCE) process

- **Vulnerabilities, risks, and threats**
 - Internal controls: Power electronics controls manipulation
 - External communications: multiple attack vectors / pathways
 - Increased complexity and charge power = increased risks and threats

- **Mitigation strategies and solutions**
 - Priority high consequence threats / risks
 - Utilize cyber informed engineering designs
 - Integrate inherent engineering solutions to minimize impact if system is compromised
Questions