

Electrorefiner Speciation and Phase Model for Prediction of Operation Lifetime

March 2024

Jacob Allen Yingling, Guy L Fredrickson, Tae-Sic Yoo, Toni Y Karlsson

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Electrorefiner Speciation and Phase Model for Prediction of Operation Lifetime


Jacob Allen Yingling, Guy L Fredrickson, Tae-Sic Yoo, Toni Y Karlsson

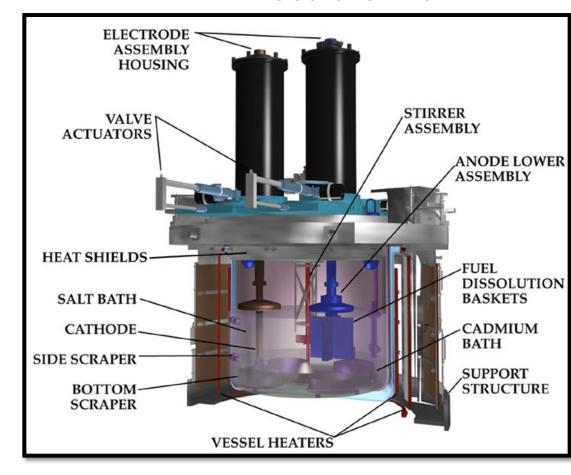
March 2024

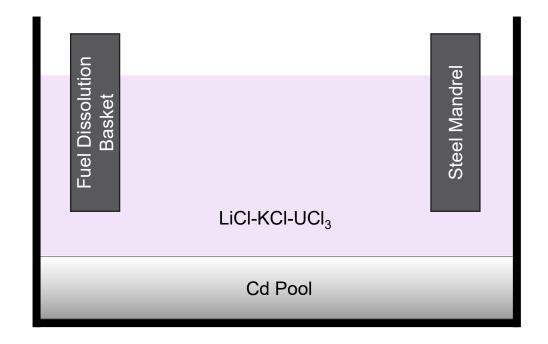
Idaho National Laboratory Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

About the Presenter


- Jacob A. Yingling, Postdoctoral research associate, Ph.D.
- Thermodynamics via computation of phase diagrams (CALPHAD)
- Veteran Naval Officer (Nuclear Power Training)
- Fuel salt synthesis for the Molten Chloride Reactor Experiment
- Thermodynamics in support of pyrochemical processing of used nuclear fuels
- Collaborators
 - Idaho National Laboratory: Toni Karlsson, Tae-Sic Yoo, Guy Fredrickson,
 - University of South Carolina: Juliano Schorne-Pinto, Jorge Palma, Clara Dixon
- Jacob.Yingling@inl.gov

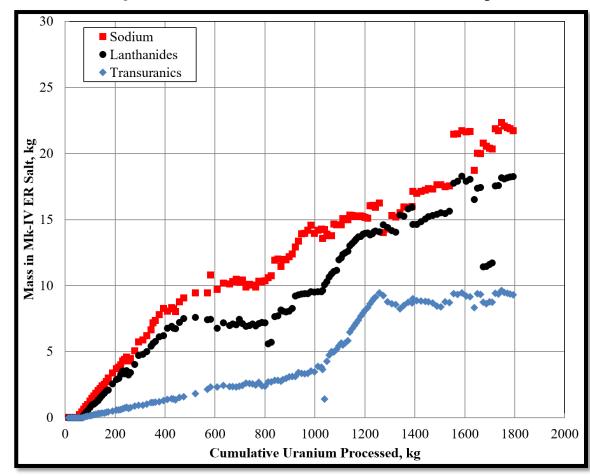

Historical context: EBR-II

- Na cooled fast breeder (1964-1994)
 - Stainless steel clad, Na bonded metallic fuel
 - Facility power and testing of fast reactor fuels
- Integral Fast Reactor prototype intended to demonstrate reprocessing
 - Changed to a Pu disposition strategy with recovery of U
 - Challenging since fission yield produces a wide distribution of elements
- IFR reprocessing equipment repurposed to processing of EBR-II driver fuel

Mk-IV Electrorefiner

Mark IV Electrorefiner

Modes of Operation


C 11	Anode						
Cell Configurations	FDBs	Cadmium Pool					
Cathode Steel mandrel Cadmium pool	Direct transport Anodic dissolution	Deposition Trivial					

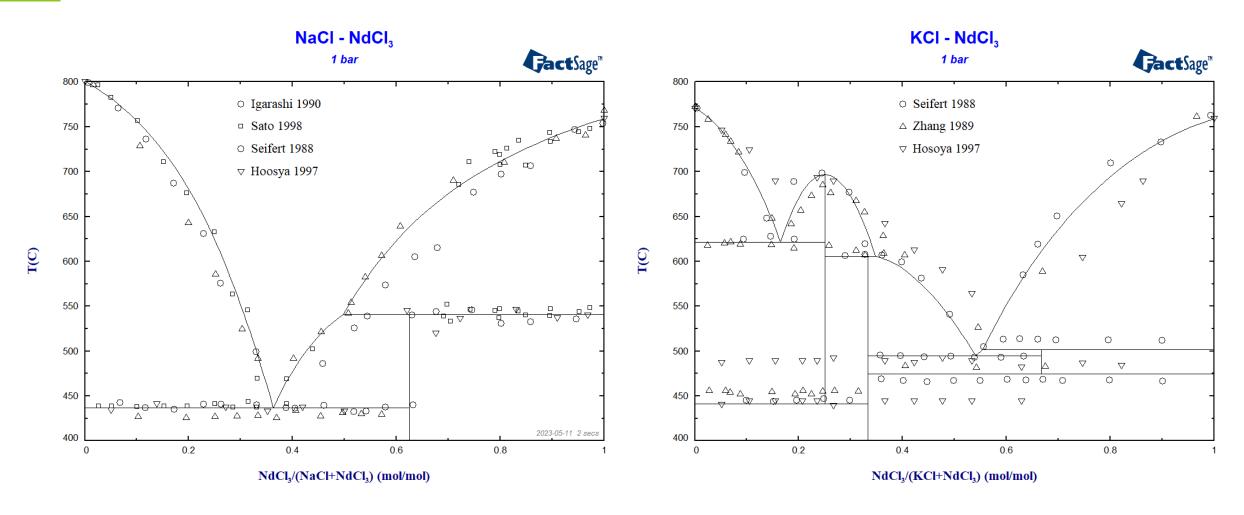
- Used fuel can be transported to the steel mandrel directly or indirectly
 - Cd as secondary electrode
 - Cd as intermediate electrode
- Complex distribution of species present within electrolyte and Cd pool
 - Significant material balance challenge

Progressive accumulation of chlorides

- LiCl-KCl-UCl₃ electrolyte
- Oxidation of impure uranium and elements more electropositive
- Reduction of highly pure uranium
- Other elements remain in electrolyte
- 500°C max operating temperature
- Accumulation of NaCl steadily increases the melting point (801°C)

Species Accumulation in Electrolyte

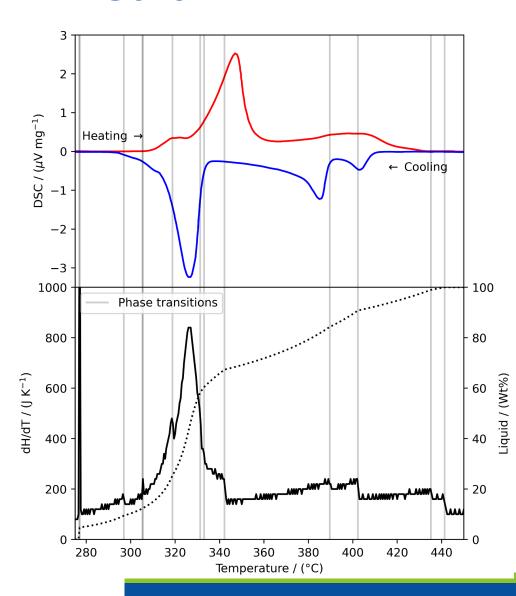
Which Species Matter?


Compound	NaCl	UCI3	LiCl	NdCl3	PuCl3	CsCl	CeCl3	BaCl2	LaCl3	PrCl3	SmCl3	SrCl2	YCI3	RbCl	NpCl3	EuCl3	GdCl3
KCI	0.109	0.078	0.220	0.038	0.020	0.004	0.017	0.005	0.005	0.005	0.004	0.001	0.001	0.000	0.000	0.000	0.000
NaCl	0.000	0.040	0.083	0.023	0.014	0.004	0.012	0.004	0.004	0.004	0.003	0.001	0.001	0.000	0.000	0.000	0.000
UCI3		0.000	0.061	0.022	0.013	0.003	0.012	0.004	0.004	0.004	0.003	0.001	0.001	0.000	0.000	0.000	0.000
LiCI			0.000	0.032	0.017	0.004	0.015	0.004	0.005	0.004	0.003	0.001	0.001	0.000	0.000	0.000	0.000
NdCl3				0.000	0.009	0.003	0.009	0.003	0.003	0.003	0.003	0.001	0.001	0.000	0.000	0.000	0.000
PuCl3					0.000	0.002	0.006	0.003	0.003	0.003	0.002	0.001	0.001	0.000	0.000	0.000	0.000
CsCl						0.000	0.002	0.001	0.001	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.000
CeCl3							0.000	0.002	0.003	0.002	0.002	0.001	0.001	legli	gible	0.000	0.000
BaCl2								0.000	0.001	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.000
LaCl3									0.000	0.001	0.001	0.000	0.001	0.000	0.000	0.000	0.000
PrCl3										0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000
SmCl3											0.000	0.000	0.001	0.000	0.000	0.000	0.000
SrCl2					Dup	licat	650					ACI -	$-BCl_a$				0.000
YCI3					0.00d	0.000	0.000		E		- x'(1)			([']) a	~/][~ ·	_v 1	0.000
RbCl									Γ	contrib	=x'(1	. — x j	$ax_{\rm p}$	() + u	$X \mid [X_A]$	ι_B]	0.000
NpCl3												x' = -	ax_B				0.000
EuCl3												<u>a</u>	$x_B + x$	A			0.000
GdCl3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Contribution parameter calculated as the weighted average of binary Førland fractions → weighted asymmetric contributions

Thermochemical Modeling

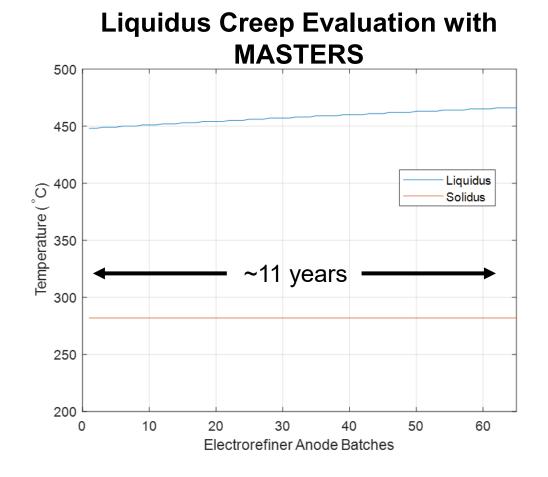
- Models based on Molten Salt Thermal Properties Database Thermochemical (MSTDB-TC)
 - Modified quasi-chemical model in quadruplet approximation $(A-X-A)+(B-X-B)=2(A-X-B) o\Delta G_{AB/X}$
- Model developer chooses parameterization of $\Delta G_{AB/X}$ =A+BT+CTInT+D/T+...+
- Accounts for short-range ordering of non-ideal Gibbs energy contributions
- Order of importance: KCl, LiCl, NaCl, UCl₃, NdCl₃, PuCl₃ ...
 - NdCl₃ systems not included in MSTDB-TC v2.0 and earlier
- Assessed systems: ACI-NdCl₃ (A=Li,Na,K,Cs)
 - Model parameterization constrained based on available experimental data
 - Optimized using experimental weights for phase equilibria, and enthalpy of mixing


Selected calculated phase diagrams

Fitting data includes phase equilibria, $\Delta_{mix}H$, and ΔH_{298}^o $\Delta G_{AB/X}$ =A+BT+CTInT+D/T+...+ reduced to A+BT or less for each eutectic

Thermal measurements of Mk-IV salt

- Differential Scanning Calorimetry heating and cooling at 5C/min
- MSTDB-TC v3.1 (pre-release)
 - Includes ACI-NdCl₃ models developed in this work
- Calculated equilibrium transitions and solution enthalpy
- DSC minus background compares well to calculated dH/dT
- Calculated transition temperatures appear to agree very well with thermal measurements.


MASTERS (Modeling And Simulation Tool for Electrochemical Recycling Systems)

- MASTERS based on MatLab and Microsoft Excel
- Recent Python interface addition for Factsage/Chemapp
- Tracks over over 1000 isotopes
- Flexible code system to simulate various fuel processing scenarios

Strategies to minimize liquidus creep

- Dilute with LiCl-KCl
- Extract NaCl
- Extract TRU
- Extract Lanthanides
- ER operation in 2-phase region
- All options can be studied with MASTERS. A draft documenting selected strategy evaluation with MASTERS is underway

Conclusions

- MQMQA is a highly effective tool for evaluating many component salts
- Pseudo-binary models developed for the LiCl-NdCl₃, NaCl-NdCl₃, KCl-NdCl₃, CsCl-NdCl₃ salts
- Models contributed to MSTDB-TC
- Mk-IV ER operation may continue for several years without salt processing
- Missions beyond EBR-II driver fuel processing will require strategies for mitigating liquidus increase

Questions?

Battelle Energy Alliance manages INL for the U.S. Department of Energy's Office of Nuclear Energy. INL is the nation's center for nuclear energy research and development, and also performs research in each of DOE's strategic goal areas: energy, national security, science and the environment.